Archivo de la etiqueta: foto

Buque Portacontenedores chino de gran tamaño incautado en Egipto

Buque Portacontenedores chino de gran tamaño incautado en Egipto

Noticias
Traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).
Noviembre 12: Según un informe aún no confirmado de Egipto, el buque de carga con bandera de Hong Kong (HK) fue detenido en el puerto de Dekheila, en Alejandría, Egipto, poco después de su arribo el 12 de noviembre. El barco colisionó con un muelle en la Terminal de Contenedores mientras amarraba y dañó dos grúas, causando supuestamente, grandes pérdidas. El barco estará detenido hasta que se evalúen los costos de los daños y el puerto reciba una garantía bancaria. El Puerto afirma que el barco se acercaba al muelle a una velocidad demasiado alta.

Actualización del 12 de noviembre: Al parecer el barco en cuestión es CSCL YELLOW SEA, simplemente no hay otro barco que se ajuste a los detalles, excepto este.

14 de noviembre, actualización: Está confirmado el buque es el CSCL YELLOW SEA, ya que el barco todavía está en Dekheila, su última posiciòn de AIS tiene como fecha las 0900 UTC del 13 de noviembre.

En las fotos, las grúas dañadas.

El buque Portacontenedores CSCL YELLOW SEA, IMO 9645906, tonelaje de porte bruto dwt 121194, capacidad 10036 TEUs, construido en el 2014, bandera de Hong Kong (HK), armador (manager) COSCO SHIPPING Lines Co., Ltd.

1

2

3

4

Fuentes:

Texto en español de gruasytransportes < gruasytransportes.wordpress.com >

maritimebulletin.net/2017/11/14/chinese-very-large-container-ship-seized-in-egypt-update/

felixstowedocker.blogspot.com/2017/11/chinese-very-large-container-ship.html

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: Chinese Very Large Container Ship seized in Egypt UPDATE (gz11), Felixstowe Dockers CSCL YELLOW SEA (gz11), felixtowe dockers, El tonelaje de peso muerto, TPM, tonelaje de porte bruto o DWT (acrónimo del término en inglés Deadweight tonnage) es.wikipedia.org/wiki/Tonelaje_de_peso_muerto,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Anuncios

Llegada de aerogeneradores a nuestro puerto – Arrival of windmills to our port -by ingenierowhite.com

Llegada de aerogeneradores a nuestro puerto –

Arrival of windmills to our port -by ingenierowhite.com

23/10/2017

Foto 1 (Crédito: ingenierowhite.com)

“La llegada de los aerogeneradores es un prestigio adicional para nuestro puerto”

El director Enrique Fortunato destacó la importancia del inicio de las operaciones de cara al futuro de la matriz energética.
En pleno desarrollo de las actividades previstas para el primer día de trabajo, Enrique Fortunato, desde el Consorcio del Puerto, compartió con IngenieroWhite.Com una reseña de las sensaciones positivas que dejó la llegada de los primeros buques con aerogeneradores.“Nos sentimos emocionados por esta gran noticias para el puerto y para Bahía. Esto nos costó mucho trabajo y es muy importabte llegar a este punto”, destacó.“Alrededor de las 10.30 empezó la descarga de las aspas, tanto en Galván como en Patagonia Norte. Son aproximadamente 40 aspas de 65 metros cada una, con una logística muy bien lograda y que da gusto verlo por todo lo que esto implica”, amplió.“Estamos hablando del inicio de una serie de operaciones muy importante. Es un adicional al tema de granos y petroquímica que se agrega al prestigio internacional que tiene el puerto”, concluyó.
ingenierowhite.com/la-llegada-los-aerogeneradores-prestigio-puerto/

Fotos obtenidas de Twitter:

2

3

 

4

5

=====================

Otro artículo relacionado:

Llegaran al puerto de Ingeniero White los primeros Aerogeneradores del futuro Parque Eolico

En el puerto de Ingeniero White, ubicado en el partido de Bahía Blanca esta a la espera de la llegada de aerogeneradores para los proyectos Eólicos del País. Entre el 2017 y 2018 se adjudicaran unos 600 aerogeneradores de los cuales unos 350 pasaran por el puerto de Bahía Blanca.

Un desafío de logística por parte del puerto

La llegada de unos 350 aerogeneradores procedentes del exterior del país; supone el movimiento de casi 40 buques por los dos muelles previstos para el desembarque de los equipos: sitio 21 (Multipropósito de Ingeniero White) y sitio 6 de Puerto Galván. Cada buque transportará un promedio de ocho aerogeneradores con todos sus componentes. Se estima que cada nave demorará entre dos y tres días en desembarcar toda su carga.

Para el almacenamiento de todo el equipo; se creara una zona en Galván que funcionara como primera subzona franca en un terreno de 3,5 hectáreas. Y posteriormente otra zona en el sitio 21 de Patagonia Norte, en Ingeniero White. Además el sector de Loma Paraguaya ubicada en proximidades a la ruta 3 Sur, se comenzó a acondicionar un área de 12,5 hectáreas.

Acondicionamiento y puesta en funcionamiento de los sitios de almacenamiento se hará una inversión cercana a 60 millones de pesos. Las obras incluyen tareas de relleno, iluminación, cercos perimetrales, oficinas, caminos de acceso y circulación por esos terrenos.

Parque Eólico Corti Pampa Energía

Durante el proyecto del parque eólico estará ubicado a unos 20 kilómetros de Bahía Blanca, por la ruta provincial 51. Se montarán 29 aerogeneradores de 3,45 Mw cada uno. Tienen una altura de 87 metros hasta el buje (donde se insertan las palas) con un diámetro del rotor de 126 metros. Los aerogeneradores y caminos que los vinculan ocuparán el 1,5% de la superficie de 1.560 hectáreas de campo; donde seguirá con su producción agropecuaria habitual.

Los vientos de la zona le dan al parque un factor de capacidad del 54%. Uno de los más altos del mundo (en Alemania es 30% y en España, 33%).
Su funcionamiento evitará la emisión de gases de efecto invernadero, disminuyendo casi totalmente la contaminación. Por lo tanto, producirá energía a un precio final muy inferior al de cualquier central térmica en servicio.

 

 

Foto crédito de infomiba en Twitter

Foto crédito de sustentartv.com

sustentartv.com/puerto-white-aerogeneradores/

=====================

Fuentes:

ingenierowhite.com/la-llegada-los-aerogeneradores-prestigio-puerto/

sustentartv.com/puerto-white-aerogeneradores/

Compilado por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: La llegada de los aerogeneradores es un prestigio adicional para nuestro puerto (gz11), tandem lift, tamaño de aspas de molinos aerogeneradores, barco BBC Pearl,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema.org

Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema.org

Compilado y traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

La Asociación de Fabricantes de Equipo Portuario (su abreviatura en inglés PEMA) publicó un documento de información en inglés, cuya intención es la de ser una guía práctica sobre la inspección estructural, de grúas pórtico de muelle (su abreviatura en inglés STS), de grúas pórtico de patio montadas sobre rieles (su abreviatura en inglés RMG), y de grúas pórtico de patio montadas sobre neumáticos (su abreviatura en inglés RTG).

Foto 1

Según el documento mencionado:

2 – FACTORES CRITICOS DE LA FALLA (o fractura) POR FATIGA

El riesgo de una falla por fatiga es el producto de la probabilidad y de la consecuencia de la falla.
Hay tres factores críticos: dos se relacionan con la probabilidad de esa falla y uno se relaciona con las consecuencias de esa falla.
Existen dos factores principales que controlan la probabilidad de una falla por fatiga:

1. La cantidad y la amplitud de los ciclos de los esfuerzos (tensiones) en un punto particular de un miembro estructural determina la probabilidad de crecimiento de fisuras, también llamado falla (o avería o daño) por fatiga.

Una mayor cantidad de ciclos de esfuerzos y mayores amplitudes de esos esfuerzos en cada ciclo, aumentan el daño y la probabilidad de falla. Para muchos miembros estructurales de grúas, la carga sobre ese miembro estructural varía en función diecta de la magnitud y de la posición de la carga en movimiento.

2. Las concentraciones de esfuerzos (stress), las cuales incrementan localmente la amplitud de los esfuerzos, y aumentan la probabilidad de crecimiento de la fisura. Las concentraciones de esfuerzos son lugares ubicados en un miembro estructural donde, debido a discontinuidades en su geometría, las tensiones locales son mucho mayores que el promedio de las mismas en toda la sección. Las concentraciones de esfuerzos se ubican típicamente en las discontinuidades tales como las conexiones, y especialmente en las soldaduras.

Los factores menores que también afectan la evolución de la fatiga incluyen las tensiones residuales de la fabricación, las propiedades del material, la carga aplicada sobre la estructura y la temperatura.

Foto  2.1: Fisura en un miembro crítico a la fractura (FCM) en el extremo inferior del tubo único diagonal superior.

La consecuencia de la falla es el tercer factor crítico que afecta el riesgo de falla. Si la falla de un miembro estructural puede dar como resultado, la caída de la carga, o el colapso de la grúa u otra inestabilidad peligrosa, la consecuencia de la falla es significante. Si ese miembro estructural, o una parte del mismo, está cargada en tensión (esfuerzo) a ese miembro se lo conoce como un miembro crítico a la fractura o FCM. Inherente a esta definición es que un FCM no posee una ruta de carga redundante y que sea viable.

Los componentes estructurales de la grúa de mayor riesgo son los FCM que experimentan un daño severo por fatiga, en particular en las ubicaciones con concentraciones de esfuerzos significativas.

Después de que una grúa es construída, el riesgo de fatiga es mitigado típicamente mediante la búsqueda de fisuras provocadas por fatiga y reparándolas antes de que un miembro estructural se quiebre ( las mejoras de los detalles pobres del diseño respecto de la fatiga estructural son posibles, pero rara vez se realizan). Este documento proporciona una guía para ayudar a encontrar fisuras a través de la comprensión de estos tres factores críticos.

2.1 MÉTODOS DE INSPECCIÓN E INTERVALOS DE INSPECCIÖN

Aunque la tasa de crecimiento de las fisuras por fatiga es controlada por muchos factores altamente variables, la probabilidad de falla de un miembro en particular, en algún momento de su vida útil, puede ser averiguada en forma aproximada utilizando datos obtenidos en pruebas de muestras reales con detalles de fatiga similares, con cálculos de la amplitud de los esfuerzos que experimenta el miembro estructural, y con estimaciones de la cantidad de ciclos de carga.

Fotos 2.2 y 2.3: Fracturas por fatiga de miembros diagonales en trolleys (carros) con maquinaria de izaje (hoist) ubicada en el carro.

La mejor manera de reducir la probabilidad de una falla peligrosa es realizar inspecciones exhaustivas de los FCM con intervalos de tiempo calculados en base a la tasa de probabilidad de crecimiento de las fisuras. Al decir inspecciones queremos decir inspecciones visuales y otros métodos no destructivos, incluyendo el ultrasonido, las tintas penetrantes y los exámenes por partículas magnéticas realizados por un inspector de soldadura certificado.

Tales inspecciones pueden ser programadas para mantener una confiabilidad estructural consistente.

Idealmente, el fabricante de grúas proporciona al usuario un programa de mantenimiento estructural que especifica los lugares de inspección, los métodos y los intervalos.

Si el programa de inspección no está disponible, puede valer la pena hacer inspecciones visuales regulares en los lugares críticos de la grúa. Aclaramos, sin embargo, que la utilidad de las inspecciones visuales como único método para detectar fisuras peligrosas es limitado:

1. La inspección visual no detectará defectos dentro del material, como pueden detectarse mediante un examen con ultrasonido.

2. Las fisuras superficiales pueden no ser visibles hasta que ya han crecido demasiado hasta llegar a un tamaño crítico de fractura.

La figura 2.4 muestra las fases del crecimiento de la fisura. Las fisuras pueden ser detectadas en la Región 2 y ser reparadas. En la Región 3 la fractura es inminente. Para miembros estructurales críticos, los intervalos de inspección pueden ser determinados en función de la cantidad de ciclos requeridos para ir desde la Región 2 a la Región 3.

 

Figura 2.4: muestra las fases de crecimiento de la fisura.

2.2 LA CANTIDAD Y LA AMPLITUD DE LOS CICLOS DE ESFUERZOS

En cualquier grúa, el movimiento de la carga mediante el carro (trolley) y la variación entre los estados de grúa cargada y grúa descargada crean tensiones (esfuerzos) fluctuantes en la estructura.

En las grúas RMG (pórticos montados sobre rieles), un daño significativo por fatiga puede también ser inducido por el movimiento del pórtico (movimiento del gantry). Las cargas provenientes de la aceleración y del viento también crean cargas fluctuantes, pero la de la carga en movimiento es generalmente la más significativa de todas.

Figura 2.5: Nivel de esfuerzo fluctuante típico en un punto sobre una grúa operando. Cada conjunto compuesto por un pico y un valle es un ciclo.

La cantidad de ciclos de este esfuerzo fluctuante y la amplitud del esfuerzo, particularmente en la amplitud del esfuerzo donde el material se separa, son los factores más importantes para evaluar el potencial de que ocurra una fisura por fatiga.

Un mayor daño por fatiga significa que existe una mayor probabilidad de fisuras y que la confiabilidad es menor.

Cuanto mayor sea la amplitud de los esfuerzos – esto es la diferencia entre el esfuerzo mínimo y el esfuerzo máximo-, mayor será la tasa (o ritmo) de crecimiento de las fisuras por cada ciclo de carga. La influencia de la amplitud de los esfuerzos en la confiabilidad generalmente se triplica. (NdeT: Es decir que el ritmo de crecimiento de las fisuras por cada ciclo de carga crecerá tres veces por cada vez que exista un aumento de la amplitud de los esfuerzos).

Cuantos más ciclos haya, más crecerán las fisuras. La influencia de la cantidad de ciclos en la confiabilidad es lineal.

2.3 CONCENTRACIONES DE ESFUERZOS

Existen discontinuidades en todas las estructuras de acero, especialmente en las uniones soldadas. Cuando la estructura es cargada en forma repetitiva con esfuerzos, las fisuras crecen en dirección perpendicular a la dirección del esfuerzo.

El ritmo de crecimiento de la fisura depende parcialmente del nivel del esfuerzo. Las concentraciones de esfuerzos causan niveles locales más altos de esfuerzos y aceleran el crecimiento de la fisura.

Las placas adosadas a la estructura y los cambios en la geometría son discontinuidades que causan concentraciones de esfuerzos particularmente en las soldaduras. Las fisuras pueden producirse en cualquier lugar en el acero, pero generalmente se producen en las uniones soldadas.

Imagen 2.6: Ejemplos de placas adosadas y soldadas con las concentraciones de esfuerzos que surgen: En la parte superior, una barra está soldada en forma perpendicular a una placa. En la parte inferior, una placa está sobremontada encima de otra placa.

La Imagen 2.7 muestra las ubicaciones típicas de los comienzos de las fisuras y el crecimiento posterior de las fisuras debido a las concentraciones de esfuerzos que multiplican la amplitud de los esfuerzos. Las fisuras crecen típicamente a partir de pequeñas muescas creadas por la dilatación provocada por el calentamiento y la posterior contracción del material durante el proceso de soldadura.

Imagen 2.7: ejemplos de los comienzos de fisuras y el crecimiento de las mismas debido a las concentraciones de esfuerzos.

Imagen 2.8: Mirando hacia abajo en una placa de conexión de un tirante que sufrió una falla por fatiga

……

2.4 DÓNDE CRECEN LAS FISURAS – UNA DISCUSIÓN PARA LAS ESTRUCTURAS DE LAS GRÚAS

Para que las fisuras crezcan debido a la fatiga provocada por la carga debe existir un esfuerzo cíclico en una ubicación particular. Dónde exista una discontinuidad geométrica habrá una concentración de esfuerzo, una mayor amplitud de esfuerzos y una mayor probabilidad de que se produzcan fisuras por fatiga.

Cuando busque fisuras por  fatiga que sean peligrosas en una grúa, en particular:

1. Búsquelas en los miembros críticos a la fractura o FCM.

2. Sobre los FCM, busque las regiones que experimentan un daño significativo por fatiga.

3. Dentro de esas regiones, busque donde existan cambios en la sección o en la forma de la estructura y donde existan discontinuidades geométricas, y particularmente en las soldaduras ubicadas en estas áreas.

Los lugares típicos de aparición de fisuras  en los miembros principales que están en tensión en la estructura (miembros tensores), o en los tramos de esos miembros estructurales, están ubicados en los extremos de las placas de conexión, en los accesorios adosados a las estructuras  y en las soldaduras envolventes ( en inglés, wrap around welds) realizadas alrededor de cualquier placa, y también en los cambios en la sección transversal de un miembro estructural.

(NdeT: También se encontrarán fisuras donde el acero no se haya amolado correctamente y haya quedado con grandes rugosidades o rebabas.)

(NdeT: Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica.)

Descargar este artículo en español en PDF: Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema

El documento completo en inglés puede ser descargado en: http://www.pema.org/download476

Fuentes:

Texto en español de gruasytransportes < gruasytransportes.wordpress.com >

Texto original en inglés: pema.org

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: simo hoite crane pdf (gz11), Simo Hoite, Liftech, miembro crítico a la fractura,  stress range= amplitud de los esfuerzos, crack= fisura, stress= esfuerzos, rate of growth= ritmo o tasa de crecimiento, stay=tirante, soldaduras envolventes=wrap around welds, fisura, soldadura, pema port equipment manufacturers paper pdf, Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica,

Otros posts relacionados:

https://gruasytransportes.wordpress.com/2016/06/05/inspeccion-estructural-en-gruas-portuarias-1/

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

 

 

 

 

 

=============

English versión:

Practical Structural Examination in Ports and Terminals | A PEMA Information Paper.

The above mentioned paper explains:

2 | CRITICAL FACTORS OF FATIGUE FAILURE

The risk of a fatigue failure is the product of the probability and the consequence of the failure. There are three critical factors: two relate to probability and one to the consequences of that failure.
Two primary factors control the probability of fatigue fracture:
1. The number and range of tension stress cycles at a particular point in a structural member determine the probability of crack growth, also called fatigue damage. More stress cycles and greater tension stress range in each cycle increase the damage and the probability of failure. For many members on cranes the loading varies directly in relation to the magnitude and position of the moving load.
2. Stress concentrations, which increase the local stress range, increase the probability of crack growth. Stress concentrations are locations on a member where, due to discontinuities in geometry, local stresses are much larger than the average across the section. Stress concentrations are typically found at discontinuities such as connections, especially at welds.
Lesser factors affecting fatigue performance include residual stresses from fabrication, material properties, loading rate, and temperature.
Picture 2.1: Crack in FCM at lower end of single upper diagonal pipe.
The consequence of failure is the third critical factor affecting risk. If failure of a structural member can result in dropping the load, collapse of the crane or other dangerous instability, the consequence
is significant. If such a member, or a portion of it, is loaded in tension the member is referred to as a
fracture critical member or FCM. Inherent in this definition is that an FCM does not have a viable
redundant load path.
The highest risk crane structural components are the FCMs experiencing severe fatigue damage,
in particular at the locations with significant stress concentrations.
After a crane is built, mitigating fatigue risk is typically done by finding the fatigue cracks and repairing them before a member breaks (improvements of poor fatigue details is possible, but rarely done). This
paper provides guidance to help find cracks through understanding of these three critical factors.
2.1 INSPECTION METHODS AND INTERVALS
Although the rate of fatigue crack growth is controlled by many highly variable factors, the probability of
failure of a particular member, at some point in its life, can be approximated using data from testing of actual samples with similar fatigue details, calculations of the stress range the member experiences, and estimates of the number of load cycles.
Pictures 2.2 and 2.3: Fatigue fractures of diagonal members on machinery trolleys.
The best way to reduce the probability of a dangerous failure is to make thorough inspections of FCMs at intervals calculated based on the probable rate of crack growth. By inspections we mean visual and
other non-destructive methods including ultrasonic, dye-penetrant, and magnetic particle examination by a certified weld inspector. Such inspections can be timed to maintain a consistent structural reliability.
Ideally, the crane maker provides the user with a structural maintenance program that specifies
inspection locations, methods and intervals.
If an inspection program is not available, it can be worthwhile to make regular visual inspections at the
critical locations on the crane. We note, however, that the usefulness of visual inspections alone to
detect dangerous cracks is limited:
1. Visual inspection will not detect flaws inside the material, as can be detected by ultrasonic examination.
2. Surface cracks may not become visible until they have grown to a fracture critical size.
Picture 2.4 shows phases of crack growth. Cracks can be detected in Region 2 and repaired. In Region 3 fracture is imminent. For critical members, inspection intervals can be determined based on the number of cycles required to go from Region 2 to Region 3.
Picture 2.4: Phases of crack growth.
2.2 NUMBER AND RANGE OF STRESS CYCLES
On any crane the moving of the load by the trolley and the variation between loaded and unloaded
states creates fluctuating stresses in the structure.
On RMG cranes significant fatigue damage can also be induced by the gantry motion. Loads from
acceleration and wind also create fluctuating loads, but the moving load is typically the most significant.
Picture 2.5: Typical fluctuating stress level at one point on a working crane. Each peak and trough is one cycle.
The number of cycles of this fluctuating stress and the stress range, particularly in the tension range where the material is pulled apart, are the most important factors in evaluating the potential for fatigue cracking.
Higher fatigue damage means there is greater probability of cracking and reliability is lower.
The greater the stress range—the difference between the minimum and maximum stress—the greater the rate of crack growth per cycle of load. The influence of the stress range on reliability is typically cubed.
The more cycles, the more the cracks will grow. The influence of the number of cycles on reliability is linear.
2.3 STRESS CONCENTRATIONS
There are discontinuities in all steel structures, especially at welded joints. When the structure
is loaded repeatedly in tension, the cracks grow perpendicular to the stress direction.
The rate of growth partially depends on the stress level. Stress concentrations cause higher levels of
local stress and accelerate crack growth.
Attachments to plates and changes in geometry are discontinuities that cause stress concentrations,
particularly at the welds. The cracks can occur anywhere in steel, but they usually occur at welded
connections.
Picture 2.6: Examples of welded attachments and the stress concentrations that arise: At the top, a bar is welded perpendicular to the plate. At the bottom, a plate is lapped over another plate.
Picture 2.7 shows typical locations of crack initiation and subsequent crack growth due to stress  concentrations that multiply the stress range. The cracks typically grow from tiny notches created by the heating and subsequent shrinkage of the welding process.
Picture 2.7: Examples of crack initiation and growth due to stress concentrations.
Picture 2.8: Looking down on a forestay connection plate that failed in fatigue.
……
2.4 WHERE CRACKS GROW – A DISCUSSION FOR CRANE STRUCTURES
For cracks to grow from fatigue loading there must be a cyclic tension stress at a particular location. Where a geometric discontinuity is present there will be a stress concentration, a greater stress range, and a higher probability that fatigue cracks will occur.
When looking for dangerous fatigue cracks on a crane, in particular:
1. Look for FCMs
2. On the FCMS look for the regions that experience a significant fatigue damage
3. Within these regions look at changes in section and at geometric discontinuities, and particularly
at the welds in these areas.
Typical cracking locations in main tension members, or portions of members, are at the ends of connection plates, at attachments and wrap around welds, and at changes in cross section.

Sources:

gruasytransportes

pema.org

Compiled by Gustavo Zamora for gruasytransportes.wordpress.com

Extracted from the Paper: Practical Structural Examination in Ports and Terminals | A PEMA Information Paper – published by pema.org

Read the complete book at:

http://www.pema.org/download476

(*) Gustavo Zamora is a cranes expert. He lives and works at Buenos Aires (Argentina).

Tags: simo hoite crane pdf (gz11), Simo Hoite, Liftech, miembro crítico a la fractura,  stress range= amplitud de los esfuerzos, crack= fisura, stress= esfuerzos, rate of growth= ritmo o tasa de crecimiento, stay=tirante, soldaduras envolventes=wrap around welds, fisura, soldadura, pema port equipment manufacturers paper pdf, Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica,

You can reproduce previously published material as a quotation, and the source of
the quotation must be cited as https://gruasytransportes.wordpress.com

Grúa Liebherr LR cae del camión – gruasytransportes- Liebherr LR crane falls from the trailer

Grúa Liebherr LR cae del camión – gruasytransportes- Liebherr LR crane falls from the trailer

Por Gustavo Zamora*, Buenos Aires (Argentina) para gruasytransportes.

 

1 – Grúa Liebherr LR caída sobre la ruta. (Crédito: gruasytransportes.wordpress.com)

 

2 – Grúa Liebherr LR caída sobre la ruta. (Crédito: gruasytransportes.wordpress.com)

Recibimos estas fotos de uno de nuestros lectores.

En las mismas puede verse el “Car Body” o parte central del chasis de una grúa sobre orugas.

Creemos que es una grúa Liebherr sobre orugas modelo LR.

El “Car Body” está volcado sobre la ruta después de caer del camión que lo transportaba.

Esperamos que nadie haya resultado herido.

Cualquier comentario al respecto será agradecido.

Fuentes:

gruasytransportes <gruasytransportes.wordpress.com>

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: grua cae en la ruta (gz11),

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

=========================

ENGLISH VERSION:

Liebherr LR crane falls from the trailer – gruasytransportes

Written by Gustavo Zamora*, Buenos Aires (Argentina).

Published by gruasytransportes.wordpress.com

1 – Liebherr LR crane that fell on the side of the highway. (Credit: gruasytransportes.wordpress.com)

 

2 – Liebherr LR crane fallen on the side of the highway. (Credit: gruasytransportes.wordpress.com)

We received those photos from one of our readers.

On those pictures you can see the “Car Body” or central part of the chassis of a crawler crane.

We think that it is a Liebherr LR crawler crane.

The Car Body is overturned on the route after falling from the truck that was transporting it.

We hope no one has been injured.

Any comment on this subject will be highly appreciated.

Source:
gruasytransportes

(*)Gustavo Zamora is a cranes expert. He lives and works at Buenos Aires (Argentina).

Tags: grua cae en la ruta (gz11),


You can reproduce previously published material as a quotation, and the source of the quotation
must be cited as https://gruasytransportes.wordpress.com

En Miami, grúas desplomadas y sin control por la fuerza del huracán Irma

En Miami, grúas desplomadas y sin control por la fuerza del huracán Irma

Foto: Una grúa dañada en el centro de Miami / Foto de AFP

Las máquinas no resistieron la fuerza del movimiento natural. La ciudad está inundada.

El gigantesco huracán Irma fortalecido el domingo impacta con fuertes vientos en las islas del sur de Florida, donde 6,3 millones de personas recibieron una orden de evacuación, luego de provocar inundaciones en el norte de Cuba y dejar 27 muertos en el Caribe.

El ojo del ciclón, ahora en categoría 4, azota la cadena de islas con intensas rachas de viento de hasta 215 km/h, y se dirige a una velocidad de 13 km/h hacia la costa oeste, anunció el Centro Nacional de Huracanes (NHC) estadounidense hacia las 10H00 locales (14H00 GMT).

Desde su ventana en el segundo piso de un pequeño edificio en Key Haven, en la punta del archipiélago, Maggie Howes describió una tormenta de violencia sin precedentes. “Los barcos están literalmente rotos, las palmeras se encuentran en el suelo, las líneas eléctricas están cayendo”, describió por teléfono a CNN esta socorrista, que sólo puede observar y esperar el final del huracán. “Es absolutamente imposible estar afuera en este momento. Nadie puede soportar los vientos que veo por la ventana”, agregó.

A pesar de las órdenes de evacuación obligatorias, muchos residentes optaron por permanecer en esta lengua de tierra muy baja y particularmente inundable. “No sabemos exactamente cuántas personas se quedaron en los Cayos. Los vientos llegan hasta 215 km/h, la lluvia a entre 25 y 60 centímetros. Es una zona muy baja. La marea llega a 4,6 metros. Espero que todos hayan escuchado” las instrucciones, dijo el gobernador de Florida, Rick Scott, en la cadena ABC.

Consulte aquí: En Miami huracán Irma deja imágenes “apocalípticas” 

Un conductor murió el sábado por la tarde en un camino en el archipiélago donde las condiciones meteorológicas ya eran difíciles. Su camión chocó contra un árbol sin que las autoridades pudieran decir con certeza si el accidente estaba directamente relacionado con el huracán. En tanto, en el centro de Miami, una grúa de construcción colapsó este domingo sobre un edificio al recibir los primeros vientos del huracán, según fotos publicadas en las redes sociales que confirmaron uno de los principales temores de las autoridades de la ciudad, donde hay alrededor de 25 grúas de más de 200 metros de altura y con contrapesos de entre 3,6 y 4,5 toneladas.

Las ciudades de Naples, Fort Myers y las densamente pobladas penínsulas de la bahía de Tampa (oeste de la península de Florida), enfrentan la amenaza de olas de hasta 4,5 metros, suficiente para cubrir una vivienda. “Estamos a punto de ser golpeados en la cara por esta tormenta”, dijo el alcalde de Tampa, Bob Buckhorn.

Consulte aquí: Miami, inundado por el huracán Irma: videos impactantes

Fuertes inundaciones en Cuba

Cuba, que sufrió el embate de Irma el viernes y sábado, registraba “fuertes inundaciones” en el litoral noroccidental, de Matanzas a La Habana, “con olas [de] entre 6 y 9 metros”, informó el Instituto de Meteorología cubano. El agua de mar, que golpeaba el emblemático Malecón, se adentró unos 250 metros en la capital, constataron periodistas de la AFP. Al menos 1,5 millones de personas fueron evacuadas en la isla, donde el viento tumbó árboles y tendidos eléctricos.

En lo inmediato no se reportaron víctimas pero sí “daños materiales significativos”. Estados Unidos recibe ahora este poderoso huracán. Unos 6,3 millones de habitantes, más de la cuarta parte de la población de Florida, recibieron la orden de evacuación, dejando detrás ciudades fantasma.

La localidad de Fort Lauderdale, a 50 km al norte de Miami, sufrió un tornado. Las autoridades emitieron advertencias por este fenómeno en varios condados. El trayecto del huracán ha cambiado ligeramente y parece que se inclinará más hacia la costa oeste que hacia la costa atlántica, pero el ciclón es tan ancho que se anticipan destructoras tormentas en ambas costas.

La turística Miami Beach parecía el sábado una “ciudad fantasma”, según el alcalde de esta localidad costera de casi 100.000 habitantes, Phil Levine, quien calificó a Irma de “huracán nuclear”. “El viento está aumentando (…) Pero nos preocupa principalmente la marea de la tormenta”, dijo a CNN. “Miami es propensa a las inundaciones, así que cuando un huracán nos empuja la marea, es muy preocupante”.

Más de 54.000 residentes encontraron refugio en uno de los 320 albergues abiertos en Florida, según el gobernador Scott, quien llamó a la movilización. “Necesitamos 1.000 enfermeras voluntarias para ayudar en los refugios”. El huracán ya dejó al menos 27 muertos en las islas del Caribe, arrasando con una larga cadena de islas, desde la pequeña Barbuda, hasta los paraísos tropicales de San Martín y San Bartolomé, las Islas Vírgenes de Estados Unidos y las Islas Vírgenes Británicas, Puerto Rico, República Dominicana, Haití y Turcos y Caicos.

Con información de AFP

Fuentes:

lafm.com.co/internacional/miami-gruas-desplomadas-sin-control-la-fuerza-del-huracan-irma/

gruasytransportes

Tags: En Miami, grúas desplomadas y sin control por la fuerza del huracán Irma (gz11) , Huracán Irma Irma Miami,

================================
Actualizacion del 10/09/2017:

 

Coloque en veleta esa grúa!

Traducido y compilado por Gustavo Zamora*, Buenos Aires (Argentina) para gruasytransportes.

En el año 2010 hubo un número alarmante de colapsos de grúas torre en el mundo debidos al VIENTO!

Los números hablan por sí solos, 27 de 157 (el 17%) de los accidentes de grúas torre informados /descubiertos en el año 2010 han estado vinculados con fuertes vientos. Sin embargo, en la mayoría de los casos el viento pudo haber sido sólo un factor que contribuyó para que ocurra un accidente. Aunque este punto de vista trata sobre las condiciones de la grúa puesta “fuera de servicio”, harían bien en tener en cuenta las tensiones adicionales que entran en juego DURANTE MUCHO TIEMPO cuando una grúa torre opera con fuertes vientos! A pesar de que el fabricante establece una velocidad del viento máxima “en servicio” de  alrededor de 44 mph / 72 kilometros por hora – -el juicio prudente de los operadores, de los gerentes y capataces es vital.

Las grúas torre son menos propensas a ser afectadas por el viento que sopla sobre ellas  de lo que uno podría pensar mirandolas – – siempre y cuando uno se atenga a las instrucciones del fabricante y utilice el sentido común. En general, la grúas torre están diseñadas para soportar una velocidad máxima de viento estando “fuera de servicio”, de por lo menos 100 mph / 160 kilometros por hora. Sin embargo, con el fin de poder lograrlo – una grúa debe ser colocada correctamente en veleta, es decir que, sus frenos de giro deben estar liberados, el carro o trolley debe ser dejado en su posición interna, y el gancho debe estar izado y sin carga.

Debido a que la superficie de la pluma es mucho mayor que la superficie de la contrapluma- o sea la pluma trasera del contrapeso-, la pluma seguirá la dirección del viento,y la contrapluma apuntará en contra del viento. Esta orientación minimiza la superficie de la grúa frente al viento reduciendo entonces la fuerza (presión x superficie= fuerza) ejercida por el viento sobre la estructura de la grúa. Además, las grúas torre están fuertemente contrapesadas. Una grúa torre típica sin carga en el gancho tiene un momento de vuelco hacia atrás, que es igual al momento de vuelco hacia adelante cuando la grúa tiene su carga máxima de diseño en su máximo radio. Como consecuencia de ello, una grúa torre estará en equilibrio, es decir, con un momento de vuelco igual a cero, cuando la grúa tenga colgando del gancho la mitad de la carga máxima de diseño con el gancho posicionado en su máximo radio.

Esta combinación de la dirección de la pluma, junto con el importante momento de vuelco hacia atrás – cuando la grúa está fuera de operación y con los frenos de giro liberados en veleta – vienen ayuda de la grúa torre para soportar fuertes vientos. Además, cuanto más grande es la grúa, mayor es el contrapeso que se opone a la carga producida por el viento, es decir, que mayor será la velocidad de viento que puede soportar. En pocas palabras, se precisa una pequeña velocidad de viento para superar el momento de vuelco hacia atrás que posee la grúa, se necesita una mayor velocidad de viento para igualar el momento de vuelco de la grúa con su carga máxima a radio máximo, y se necesita una aún mayor velocidad de viento para vencer la resistencia estructural de la grúa torre. Está su grúa colocada en Veleta?

Mirando desde el piso es posible saber si la grúa torre está en veleta o no, simplemente observando en búsqueda de algunos signos indicadores, tales como la dirección en que flamean las banderas colocadas en alguna azotea cercana u observando a otras grúas torre que se encuentren en las cercanías. Hay varias razones posibles para que una grúa no esté en veleta, en primer lugar, que el operador simplemente no la haya colocado en veleta, la siguiente sería que la grúa tenga problemas mecánicos o eléctricos que no permitan ponerla en veleta, y la más grave – que la grúa tenga algún problema en el rodamiento de giro.

Dependiendo del modelo de la grúa, el modo veleta puede ser activado en forma manual, eléctrica o ambas cosas. TENGA CUIDADO, el hecho de haber puesto la grua en veleta, no garantiza que los frenos estén liberados en la realidad. Por lo tanto, sería prudente realizar una “prueba de movimiento” del giro – tanto después del montaje de la grúa como posteriormente, con periódicidad, y sobre todo antes de la llegada de una tormenta que se anuncia. Además un buen hábito para adoptar es, al final de cada jornada laboral, tomarse el tiempo para dejar su grúa orientada de acuerdo con la dirección de los vientos dominantes en ese momento. Esto ayudará a minimizar las probabilidades (Ley de Murphy), por ejemplo,digamos que usted deja una grúa apuntando directamente hacia un viento suave asumiendo que la grúa en veleta, girará naturalmente de acuerdo a la dirección del viento- – y durante la noche una fuerte tormenta sopla con la misma dirección de viento que habia al abandonar la grúa? En ese caso otra grúa muerde el polvo!

Hay varias maneras de verificar que una grúa gira libremente en “veleta”, tales como:

1). En un día ventoso, antes de bajar de la grúa, deje la grúa perpendicular al viento – – colóquela en modo veleta – – la pluma debería girar mostrando la dirección del viento.

2). En un día sin viento, gire la grúa suavemente – – y mientras está en movimiento,active el modo veleta de la grúa – – y luego desconecte la alimentación de la grúa – – la grúa debería continuar girando libremente. (Esto puede no ser posible de hacer en algunos modelos de grúa)

Desafortunadamente, pocos piensan alguna vez en realizar una prueba de movimiento para verificar si una grúa torre de hecho puede – girar libremente – cuando es colocada en veleta. Esta característica de seguridad a menudo olvidada es más importante de lo que la mayoría de la gente cree – lo cual es evidente debido a la gran cantidad de accidentes asociados con ella.

Fuente:

http://www.towercranesupport.com/tower%20crane%20weathervane.php

gruasytransportes.wordpress.com/2011/09/07/alerta-para-gruas-torre-en-el-noreste-de-los-ee-uu/

Fuente: gruasytransportes

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: Alerta para Gruas Torre en el Noreste de los EE.UU. (gz11), gruas en edificio se mueven por mal tiempo,

==========================

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Reachstackers para transportar hasta 250 toneladas – Reach Stackers up to 250t capacity

Reachstackers para transportar hasta 250 toneladas – Reach Stackers up to 250t capacity

 

Por Gustavo Zamora*, para gruasytransportes, Buenos Aires (Argentina).

Foto: Reachstacker CES de 150 toneladas de capacidad durante la prueba de carga antes de ser enviada al sitio del cliente CS Wind UK en Escocia. (Crédito Elvio Simonetti)

En un contacto con gruasytransportes, el Sr. Nicolas Huthloff CEO de la empresa de orígen alemán CES Group, nos explicaba que en su planta de Italia, la empresa alemana desarrolla y produce la primera Reach Stacker del mundo con una distancia entre ejes variable y con el motor diesel y las bombas hidráulicas montadas sobre un lateral de la máquina.

El sistema diesel- hidráulico completo está montado dentro de una casilla colocada como un pontón del tipo “clip-on” en el lateral de la máquina. Esta unidad modular con acoples rápidos contiene el motor diesel (de marca Cummins o Volvo), el sistema de enfriamiento, las bombas hidráulicas y el tanque de aceite hidráulico. Esta modularidad permite cambiar la unidad de potencia diesel-hidráulica en sólo 60 minutos, según dice el fabricante.

 

Foto: Reachstacker CES con spreader (Crédito gruasytransportes.wordpress.com)

 

Foto 1: Unidad del tipo clip-on que incluye conjunto motor diesel, radiador, tanque de aceite hidráulico y bombas hidráulicas de la reachstacker CES (Crédito gruasytransportes.wordpress.com).

 

Foto 2: Unidad del tipo clip-on que incluye conjunto motor diesel, radiador, tanque de aceite hidráulico y bombas hidráulicas de la reachstacker CES (Crédito gruasytransportes.wordpress.com).

En la operación, cada reachstacker se comporta como varias máquinas dentro de una sola máquina, al poder ajustar el operador su propia reachstacker a la capacidad de levantamiento y a la longitud entre ejes de su elección en el momento en que sea necesario.

Si bien la elevación, el transporte y la colocación de los contenedores ISO estándar son una tarea típica para estas máquinas.

“Lo importante”, nos dice Huthloff, “es que las Reachstackers CES han sido diseñadas específicamente para mover cargas pesadas en aplicaciones del tipo “pick-and-carry”, esto es trasladar la grúa con la carga colgando de la grúa, y no sólo para levantar esas cargas pesadas. De esta forma nuestras reachstackers se posicionan como una alternativa a las grúas sobre orugas y a los Módulos hidráulicos de transporte autopropulsados, conocidos como SPMT por sus siglas en inglés”.

“Estamos entregando en estos días, dos reachstackers de la Serie Heavy Duty con una capacidad de levantamiento de 150 toneladas en cada reachstacker. Estas máquinas son para la empresa CS Wind <http://www.cswinduk.com/ > que las planea utilizar para el manejo de monopilotes -en inglés, monopiles- para las torres de los molinos de viento offshore”, dijo Huthloff.

Las reach stackers CES vienen en tres series diferentes Standard, Combi y Heavy Duty, con cinco distancias entre ejes diferentes desde la más corta a la más larga logrando de este modo cinco tablas de carga posibles en una sola máquina con un chasis extensible.

Tracción hidrostática:

La inteligencia del software de la reachstacker junto al innovador sistema de tracción hidrostático “Drive Sensing System” de Dana- Rexroth permiten la utilización de un motor diesel Volvo o Cummins de menor tamaño que trabaja a unas menores RPM máximas logrando así un bajo consumo de combustible con menor contaminación ambiental, un menor desgaste de neumáticos y de frenos así como un reducido nivel de ruido y una simplificación de las tareas de mantenimiento.

La dirección trasera de estas reachstackers es hidrostática, según el fabricante.

 

La capacidad de levantamiento variable:

La capacidad de levantamiento de la reachstacker CES con chasis extensible es comparable a la de una reachstacker tradicional con una distancia entre ejes corta hasta que extendemos hidráulicamente la parte trasera del chasis, alejando en consecuencia el contrapeso para así tener la máxima capacidad de levantamiento propia de una reachstacker superior.

Después de utilizar la reachstacker con su máxima capacidad de levantamiento es decir con la distancia entre ejes larga, y una vez que la pluma – en inglés, boom- está retraída es posible retraer hidráulicamente la parte trasera del chasis, y luego levantar la carga con la distancia entre ejes corta.

Esto hace que la reachstacker CES tenga la maniobrabilidad de las reachstackers con distancia entre ejes corta, pero con la capacidad de levantamiento de las reachstackers con distancia entre ejes larga.

Foto: Contrapeso extensible de la reachstacker CES (Crédito gruasytransportes.wordpress.com)

La cabina del operador:

Se ofrece como opcional la posibilidad de deslizar hacia adelante o atrás la cabina del operador, durante la operación.

Durante la operación con contenedores, mientras la pluma se eleva la cabina se inclina hacia arriba acompañando el movimiento de la pluma para favorecer la ergonomía del operador. Ese proceso completo es controlado por el software CES ECO-SOFT.

Para operar con contenedores ubicados en barcazas o en la segunda vía del ferrocarril se puede solicitar como opción una cabina instalada en el lateral de la máquina con un sistema hidráulico de elevación y de inclinación de la misma.

 

Según el fabricante la reachstacker CES viene en seis versiones diferentes donde las únicas diferencias son los contrapesos y el tamaño de los neumáticos. Así que si el cliente decide modificar su máquina por otra versión con una menor capacidad, puede actualizar el tamaño de los neumáticos y del contrapeso o añadirle estabilizadores a su máquina para tener así una máquina con una capacidad de levantamiento mayor.

“Nuestra reachstacker puede ser transportada fácilmente en contenedores estandard o en trailers, no se precisan transportes especiales y el servicio al cliente que ofrecemos es de 24 horas durante los 7 días de la semana”, según Huthloff.

La serie “Standard”:

La serie “Standard” está compuesta por las reachstackers del Tipo A hasta tipo F con una capacidad de carga máxima de hasta 50 toneladas bajo el spreader, lo que la hace adecuada para el manejo de contenedores y cajas móviles – en inglés, swap bodies- incluso atendiendo barcazas. Las reachstackers del Tipo A hasta tipo F pueden tener una distancia entre ejes o batalla -en inglés, wheelbase- de 6,5 metros o de 8,5 metros. No precisan patas estabilizadoras. Estas reachstackers “Standard” están equipadas con neumáticos 18:00 x 25 adelante y atrás en los tipos A, B y C, mientras poseen neumáticos 18:00 x 33 en los tipos D, E y F.

Estas máquinas de la serie “Standard” están equipadas con un spreader de hasta 50 toneladas de capacidad que además posee cuatro cáncamos para izaje de 12,5 toneladas de capacidad cada uno.

La serie “Combi”:

La serie “Combi” es una reachstacker del Tipo G y tipo H con una capacidad de carga máxima que va desde 60 toneladas hasta 90 toneladas bajo los cáncamos y 86 toneladas de capacidad bajo las trabas giratorias – en inglés, twist locks- del spreader, lo que la hace adecuada tanto para el manejo de contenedores estándar como para levantar y transportar cargas pesadas y también contenedores pesados. Las reachstackers del Tipo G y tipo H pueden tener una distancia entre ejes de 6,5 metros o de 8,5 metros. No precisan patas estabilizadoras.

El chasis estándar es fijo y es extensible en opción.

La serie “Heavy Duty”:

La serie “Heavy Duty” es una reachstacker del Tipo J, tipo K y tipo L con una capacidad de carga máxima que va desde 125 toneladas hasta 250 toneladas, lo que la hace adecuada para el manejo de cargas muy pesadas tales como los monopilotes de la industria eólica offshore, carga de proyecto y grandes piezas en astilleros. Estas reachstackers “Heavy Duty” están equipadas con neumáticos 27:00 x 49 adelante y 24:00 x 35 atrás, para poder transportar grandes cargas de un lugar a otro.

Las reachstackers VRS J y VRS K poseen cuatro neumáticos delanteros, mientras que las reachstackers VRS L tienen seis neumáticos delanteros, montados con suspensión independiente para una mejor tracción y una menor presión sobre el piso. Dependiendo de la carga, la tracción es sobre dos ruedas o sobre cuatro ruedas.

Foto: Presentación oficial de CES el 30 de Junio pasado en Verona. En la foto Robert Huthloff entre Christophe Gaussin y Elvio Simonetti. CES presentó allí su nueva reachstacker de 150 toneladas de capacidad de levantamiento. (Crédito Elvio Simonetti)

Esta serie “Heavy Duty” que es la de mayor capacidad de carga, está compuesta por los siguientes modelos:

-La VRS J que con una distancia entre ejes extensible entre 7,5 metros y 10,5 metros posee una capacidad de levantamiento máxima de 125 toneladas con un centro de carga ubicado a una distancia de 2.000 mm (alcance), cuando su distancia entre ejes es de 10,5 metros y puede levantar un máximo de 110 toneladas, cuando su distancia entre ejes es de 7,5 metros.

-la VRS K y la VRS H que con una distancia entre ejes extensible entre 9 metros y 12 metros poseen una capacidad de levantamiento máxima de 155 toneladas con un centro de carga ubicado a una distancia de 2.000 mm (alcance), cuando su distancia entre ejes es de 12 metros y puede levantar un máximo de 140 toneladas, cuando su distancia entre ejes es de 9 metros.

-y la VRS L que con una distancia entre ejes extensible entre 9 metros y 12 metros posee una capacidad de levantamiento máxima de 250 toneladas con un centro de carga ubicado a una distancia de 2.000 mm (alcance), cuando su distancia entre ejes es de 12 metros y puede levantar un máximo de 235 toneladas, cuando su distancia entre ejes es de 9 metros.

Todas estas reachstackers no precisan patas estabilizadoras pero se ofrecen como opción.

En la serie “Heavy Duty” la tracción está a cargo de 4 motores de rueda hidráulicos Bosch en lugar del eje delantero Kessler que equipa a las otras series, y vienen equipadas con un motor Volvo TAD1173VA en lugar del motor Cummins o Volvo de 320 HP y 1700 RPM máximas de las reachstackers de la serie “Standard”.

Ninguna reachstacker CES posee transmisión mecánica ya que usan un circuito hidrostático de bomba y motor hidráulico.

El CEO del CES Group resalta el hecho de que todas estas reachstackers pueden levantar la carga máxima permitida sin estabilizadores y pueden también trasladar esa misma carga colgando de la máquina.

Para más información sobre las nuevas reachstackers CES puede visitar la página web: www.ces-vrs.eu

Vídeo del contrapeso extensible:

< https://youtu.be/oKZS-rwce3Y >

Nombre original del video:

REACH STACKER VRS by CES italy

Publicado en youtube en Febrero 17, 2016 por Ces Italy

Eje trasero extensible – EXTENDABLE REAR AXLE

Agradecemos al Sr. Nicolas Huthloff, CEO del CES Group y al Sr. Elvio Simonetti de WATERWAYS ENGINEERING & CONSULTANCY Ltd. por la información para esta nota.

Descargue este artículo en pdf: Reachstacker 250 T

Fuentes:

gruasytransportes < gruasytransportes.wordpress.com >

Elvio Simonetti

CES Group

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: Heavy Duty Reach Stackers up to 250t capacity – the alternative to crawler cranes and SPMT (gz11), CES launches 150 tonne reachstacker (gz11), ARTICLE Elvio Simonetti (gz11), reachstacker= reach stacker= apiladora de contenedores, distancia entre ejes o batalla= wheelbase, monopile= monopilote, aplicaciones del tipo “pick-and-carry” = esto es trasladar la grúa con la carga colgando de la grúa, lifting eye= cáncamo,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Transporte de torre para refinería en Mendoza

Transporte de torre para refinería en Mendoza

Transcripto por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

Torre para refinería de YPF en Luján de Cuyo, Mendoza.

Planta Sica- Esperanza, Santa Fe.

18 líneas Goldhofer THP/SL

Torre 50 metros de largo por 5 metros de ancho por 5 metros de alto

Peso 170 toneladas

Formación completa: 60 metros de largo por 5 metros de ancho por 5 metros de alto

Peso 255 Toneladas

 

-En la Argentina, la empresa ALE Heavylift está asociada con la firma Transportes Rivas, que se dedica al transporte de cargas pesadas.

-Agradecemos la colaboración de los Sres. Alfredo Rivas y Jonathan Rivas en Buenos Aires, Argentina, por la información para esta nota.

Fuentes:

gruasytransportes

rivas-sa.com

youtube

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: Torre 170 toneladas. Transportes Rivas y metalurgica Sica – blog (gz7), Transportes Rivas y Cía.S.A., Transportes Rivas,

v 322

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.