Archivo de la etiqueta: grua movil portuaria

El barco portacontenedores ultra grande visto desde un angulo diferente

El barco portacontenedores ultra grande visto desde un angulo diferente

Publicado: 12 Feb 2018

Traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

foto3

FOTO 1

ULCS, del inglés Ultra Large Container Ship que significa Barco Portacontenedores Ultra Grande, es el nombre generico que se le da a los barcos portacontenedores que poseen capacidades nominales de contenedores de 10.000 TEUs y mayores. Para muchos, el ULCS es un buque fascinante, y los editores de DynaLiners Weekly, publicado por Dynamar de Alkmaar/The Netherlands, no son la excepción.

DynaLiners realiza un seguimiento de todos los ULCS que están operativos y de los que están pedidos para ser construídos. No sólo eso, también verificamos la distribución de los barcos entre los operadores individuales, tanto por cantidad, como por tamaño y tipo.

Esto, entre otros datos, revela la flexibilidad de un operador para comerciar a través del nuevo Canal de Panamá con los barcos ULCS. De lo contrario, el operador estaría básicamente condenado a dar servicio sólo en el comercio entre Europa y Extremo Oriente con un tonelaje tan grande.

Al día 1 de enero de 2018, estaban operando 451 barcos ULCS, mientras que otros 129 estaban en proceso de fabricación para su entrega en el año 2020. MSC despliega la mayor cantidad (noventa) de ellos y al mismo tiempo tiene los barcos ULCS más grandes de todos ya ordenados para ser fabricados (11 x 23.350 TEUs).

Maersk Line, el inventor, iniciador y desarrollador de los buques ULCS con su “Emma Maersk” de 15.500 TEUs (que fuera inicialmente calificada para 11.000 TEUs cuando se botó en agosto del 2006), ocupa el segundo lugar con ochenta y seis embarcaciones en la actualidad, de las cuales trece fueron heredadas en su reciente adquisición de la naviera Hamburg Süd. Los daneses tienen once unidades ya ordenadas en proceso de fabricación, incluyendo seis unidades de 20.600 TEUs cada una.

Cosco Shipping Line actualmente utiliza sesenta y siete buques ULCS, a los que se unirán otras veintinueve unidades en los próximos dos años. Un total de veintidós unidades actualmente existentes y veintisiete unidades que están siendo construídas provienen de la empresa China Shipping que fuera incorporada en el año 2016.

Finalmente, de los operadores más grandes de buques ULCS, CMA CGM actualmente despliega setenta y cuatro de esos buques, incluidos veinte que originalmente eran de APL. Su cartera de pedidos de compra a astilleros comprende nueve leviatanes de 22.850 TEUs, los cuales están destinados a convertirse en los primeros buques ULCS propulsados por motores que utilizan GNL (Gas Natural Licuado).

Gracias a la adquisición de la naviera UASC (veintidós buques ULCS), la naviera Hapag-Lloyd lidera la siguiente franja con cuarenta y cinco barcos (no posee barcos comprados en proceso de fabricación), seguida por ONE (el 1 de abril se unen “K” Line, MOL y NYK).

El firme solitario Evergreen tiene treinta y un buques ULCS operando y en la lista de espera (está contemplando veinte buques más), y su compatriota que es igualmente independiente, Yang Ming, posee veintiun buques ULCS. Se están construyendo seis unidades para propietarios que no son operadores.

En febrero de 2018, se habrán entregado otros diez buques ULCS aproximadamente y serán agregados a la flota existente, sin cambiar el número total.

Navieras –                                                          Buques                      –   Capacidades

foto4

FOTO 2

Los buques ULCS se pueden clasificar en cinco tipos diferentes, de los cuales los “nombres” hablan por sí sólos. Los gigantescos New Post Panamax, en particular los de más de 18.000, pueden hablarle a la imaginación de todos, los dos nuevos tipos buques ULCS New Panamax son básicamente los buques más flexibles, capaces de llevar mercancías por todo el mundo:

– SNP – Sub New Panamax– 17 a 18 contenedores de ancho sobre cubierta

– NP – New Panamax – 19 contenedores de ancho sobre cubierta– puede pasar a través del Canal de Panamá. (También llamados: Neo-Panamax (NPX)

– NPP – New Post Panamax – 20 a 21 contenedores de ancho sobre cubierta– no puede pasar a través del Canal de Panamá (También llamados: “Post New Panamax” o “Post Neo Panamax” )

– Más de 18.000 TEUs – 23 contenedores de ancho sobre cubierta

– Más de 22.000 TEUs – 24 contenedores de ancho sobre cubierta

La distribución de los diversos tipos de buques por cada naviera, aparece en la siguiente tabla:

Navieras –              Tipos de buques                    –            Buques               –   Capacidades

foto5

FOTO 3

Una última nota: todos los buques ULCS de más de 18.000 TEUs (también conocidos como buques tipo MegaMax) operan invariablemente en el comercio de alta densidad entre Europa del Norte y el Extremo Oriente. La capacidad promedio de todos los barcos de todos los tamaños que operan actualmente aquí es de 15.000 TEUs.

Fuentes:

Dynamar, Editores de DynaLiners

hellenicshippingnews.com/the-ultra-large-container-ship-from-a-different-angle/

Felixstowe Dockers

Texto en español de gruasytransportes < gruasytransportes.wordpress.com >

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: Felixstowe Dockers. The Ultra Large Container Ship from a different angle (gz22),

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Anuncios

Cuidados del turbocompresor del motor

Cuidados del turbocompresor del motor

Por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

 

En los buques y en las estaciones generadoras de energía, donde se exige una muy alta disponibilidad al motor diesel. Los turbocompresores del motor diesel son recorridos, esto es reparados a nuevo, en base a la cantidad de horas de operación y no en base a su condición.

 

En los motores diesel auxiliares que funcionan como generadores en los buques, se repara el turbocompresor a nuevo y se cambian sus rodamientos durante el mantenimiento programado de las 8.000 horas (1).

Algunos usuarios de motores MAN, Mercedes Benz y MTU de entre 400 y 1.000 HP de potencia, cambian los turbocompresores y luego los hacen reconstruír a nuevo cada 4.000 o 5.000 horas de trabajo.

1 Crédito: diariomotor.com.

 

* Consejos para alargar la vida útil del turbocompresor

 

Existen tareas de mantenimiento preventivo que se pueden realizar, tales como una descarbonización del turbo o una comprobación de holguras en su eje. No obstante, lo mejor para evitar que el turbo se vaya al cielo de los turbos es seguir estas pautas:

 

– Espera un par de minutos al arrancar el motor diesel y también antes de parar el motor diesel, manteniendo el motor funcionando en ralentí y si no es posible tener el motor en ralenti espere con el motor a velocidad nominal pero sin carga. Esto normalizará la temperatura del turbo y evitará que el aceite del eje se carbonice, creando sedimentos y partículas abrasivas que darán al traste con el carrete y provocarán fugas de aceite. Las paradas tras una conducción a máxima carga son especialmente delicadas.

 

– Utilice aceite de máxima calidad. Parece una obviedad, pero lo cierto es que el ahorro en aceites baratos – con propiedades lubricantes inferiores y deterioro rápido – queda completamente anulado por una rotura del turbocompresor antes de tiempo.

-No acelere el motor ni lo cargue hasta que el aceite no esté a la temperatura óptima. Cae de cajón, quieres asegurarte de que las propiedades de lubricación del aceite sean perfectas, y la viscosidad adecuada. Esto también beneficia al resto de componentes de fricción del motor.

2 Turbocompresor roto. Crédito: diariomotor.com.

 

* ¿Qué debo hacer en caso de avería del turbocompresor?

Si tu equipo lo permite para el motor de inmediato y evita males mayores como doblar una biela del motor o sacar una biela por el costado del block del motor. Los mecánicos reemplazarán el turbocompresor. El turbo volverá a funcionar adecuadamente tras la reparación. La integridad física del motor no se vería comprometida si la reparación estuvo bien realizada. (2)

 

Siempre es más económico reparar un turbo que comprarlo nuevo. En cuanto empecemos a notar síntomas de fallo (silba demasiado, falta de potencia, humo azulado, consumo de aceite…) es mejor revisar su estado y comprobar si tiene holgura axial antes de que se averíe definitivamente. Un eje desgastado acaba siempre en rotura y un turbo al romperse puede destrozar el motor por completo. Comprobar la holgura del eje del turbo no suele llevar más de una hora de mano de obra, y ese trabajo es un “regalo” comparado con las consecuencias de la rotura.

Es, entonces, mejor comprobar su estado antes de que se rompa por completo.(7)

* Falla del evaporador de gases de motor

3 Filtro del evaporador de gases (PCV). Crédito: turbo-matic.com

 

En muchos motores diesel, uno de los fallos frecuentes es la avería en el filtro evaporador de gases de motor, que suele estar compuesto por una válvula o membrana y por un filtro.

Nos podemos encontrar con que el filtro esté obstruido o petrificado por acumulación de carbonilla y que la válvula o membrana esté perforada y no actúe. En cualquiera de los dos casos, la avería se traduce en un fallo en el sistema de recirculación de vapores de motor.

Como consecuencia, nos podemos encontrar con que pase aceite hacia el circuito de aspiración de aire del turbocompresor, lo que puede provocar que el aceite llegue al sistema de admisión del motor y se cree autocombustión por ingestión de aceite. Y también, por otro lado, se puede crear una sobrepresión de gases de motor, que al no ser evacuados por el evaporador, pueden provocar daños severos en el turbocompresor e incluso en el motor. (3)

 

* Veamos a continuación qué dice el boletín de información técnica para el reemplazo del interenfriador – o intercooler- después de una avería del turbocompresor publicado en inglés por Behr Hella Service GmbH:

 

* Reemplazo del intercooler después de una avería o falla del turbocompresor

 

Puntos generales

 

Casi todos los motores diesel modernos con turbocompresor tienen un Intercooler -o interenfriador-. El aire caliente (con hasta 150 °C) comprimido por el turbocompresor es luego enfriado por el intercooler (Fig. 1) antes de llegar a la cámara de compresión. El aire comprimido es enfriado por el aire ambiente del exterior (interenfriamiento directo) o es enfriado por el refrigerante del motor (interenfriamiento indirecto).

La configuración y la función de los dos sistemas se muestra en más detalle en la hoja de información técnica “Intercooler”.

Fig. 1. Crédito: behrhellaservice.com.

 

* Razones para tener una avería y sus consecuencias

 

Junto a las razones clásicas para la falla o avería tales como

  • Daño externo (accidente, lanzamiento de grava o tierra dentro del turbocompresor).
  • Mangueras dañadas / bloqueadas.
  • Caudal de aire reducido debido a la superficie del filtro con suciedad.
  • Pérdida de refrigerante o del aire secundario que trabaja en el intercooler debido a fugas.
  • Un pobre intercambio de calor debido a la suciedad interna del intercooler (depósitos calcáreos o agentes selladores).

 

Existen otras posibilidades que también deben ser consideradas. Estas están relacionadas generalmente con la avería del turbocompresor.

En el caso de daños mecánicos al turbocompresor (Figuras. 2 a 5) o en caso de una fuga de aceite en el lado del compresor, el aceite y las virutas pueden acumularse

en el intercooler. El hecho de que este ensuciamiento / bloqueo puede conducir a una caída en el rendimiento del motor diesel es lo menos dañino que puede ocurrir. Las cosas se vuelven mucho más serias cuando el aceite o la viruta salen del intercooler y entran en la cámara de combustión. Esto a menudo conduce a una avería o falla del motor. Algunos motores sufren un episodio de sobrevelocidad – en inglés, “overrev”-, es decir que aumentan sus RPM hasta quedar destruídos después de que el turbocompresor ha sido reemplazado.

Fig. 2. Crédito: behrhellaservice.com.

 

Se puede llegar a acumular tanto aceite en el intercooler que conduzca a que este aceite se autopropulse repentinamente hacia la cámara de combustión después de la instalación del turbocompresor nuevo, que fue colocado para volver a tener la presión de sobrealimentación correcta.

En caso de que eso suceda cualquier especialista puede imaginar lo que acontece poco después que el motor se ha puesto en marcha. Para prevenir tal daño, como así también el “daño subsiguiente” (esto es que las partículas de metal se liberan luego en el intercooler y entran luego a la cámara de combustión), el intercooler y las piezas de fijación siempre deben ser examinados cuidadosamente cada vez que se reemplaza un turbocompresor.(4)

 

* En caso de que los cilindros estén inundados con aceite:

 

El motor de arranque puede verse impedido de hacer girar el motor por una causa ajena al motor en sí. El aceite pudo llegar a los cilindros e inundarlos. Esto puede producir daños severos en el motor al intentar arrancarlo, como por ejemplo doblar una biela.

La solución es sacar los inyectores ANTES DE INSTALAR EL TURBOCOMPRESOR NUEVO y hacer girar el motor con el motor de arranque durante 10 a 15 segundos sin que el motor arranque -o sea con el paso de combustible cerrado-, hasta que el aceite haya sido expulsado totalmente desde dentro de los cilindros.

Luego reinstalar los inyectores y purgar la línea de combustible. (5)y(6)

 

* Durante la instalación de Turbocompresor:
Es importante que durante todo el proceso de instalación del turbocompresor, se evite la entrada de suciedad o de elementos extraños a ninguna parte del turbo.
Cualquier suciedad o elementos extraños que entren al turbocompresor pueden causar daños catastróficos debido a la muy alta velocidad de operación del mismo (hasta 300.000 rpm). (6)

 

* DESPUES DE INSTALAR EL TURBOCOMPRESOR NUEVO:

 

-Debemos volver a hacer girar el motor con el motor de arranque durante 10 a 15 segundos sin que el motor arranque -o sea con el paso de combustible cerrado- esto ayuda a purgar/cebar el circuito de lubricación de aceite al turbocompresor al llenar las tuberías de presión de aceite de lubricación, el filtro de aceite y el turbocompresor con aceite antes de la puesta en marcha. Nota importante: tan pronto como el

el motor arranca, el turbo funcionará a alta velocidad y la falta de lubricación en estos

primeros segundos vitales pueden destruir un turbocompresor nuevo.

(5)y (6)

 

* Continuando con lo explicado en el boletín de información técnica para el reemplazo del interenfriador – o intercooler- después de una avería del turbocompresor publicado en inglés por Behr Hella Service GmbH:

 

* Motivo del daño, prueba de componentes

 

En el contexto de la sustitución de un turbocompresor, el motivo de la avería siempre debe ser investigado. De lo contrario, el turbocompresor podría fallar de nuevo en muy poco tiempo.

 

Deben ser atendidas las normas de instalación provistas por los fabricantes tanto del turbocompresor como del vehículo.

 

Aquí hay algunos ejemplos:

  • Verifique las válvulas de control y/o de conmutación y las tuberías de vacío
  • Verifique la tubería de admisión de aire y la tubería colectora de gases de escape en búsqueda de impurezas / residuos y límpielas de ser necesario
  • Verifique el filtro de aire y reemplácelo de ser necesario.
  • Reemplace la tubería de suministro de aceite al turbocompresor (una

inspección visual o una limpieza no son suficientes).

  • Verifique la tubería de retorno de aceite, límpiela, y reemplácela si tiene dudas

(las impurezas pueden entrar en el cárter de aceite y luego ser succionadas de nuevo por la bomba de aceite).

  • Lleve a cabo un cambio de aceite del motor y un reemplazo del filtro de aceite del motor.
  • No utilice agentes selladores líquidos.
  • Llene previamente con aceite el orificio de entrada de aceite del turbocompresor antes de ponerlo en funcionamiento.
  • Compruebe / limpie toda la ruta del aire entre el turbocompresor y el

motor.

  • Verifique que el intercooler no tenga residuos de aceite / impurezas, reemplácelo

si es necesario.

Fig. 3. Crédito: behrhellaservice.com.

 

Fig. 4. Crédito: behrhellaservice.com.

Fig. 5. Crédito: behrhellaservice.com.

 

* Limpieza del intercooler
La limpieza del intercooler es extremadamente problemática.
Hay diferentes opiniones sobre esto en el mercado. En muchos casos, el fabricante del equipo recomienda el reemplazo del intercooler. El intercooler siempre debe ser reemplazado en el caso de daño mecánico al turbocompresor (por ejemplo, paletas o álabes dañados, Fig. 2 a 5). No se puede garantizar que las virutas se eliminen completamente cuando se lava y enjuaga el intercooler, particularmente en el caso de intercoolers con insertos de turbulencia (Fig. 6). El riesgo de un daño posterior causado por las virutas que se liberen y sean succionadas en dirección hacia dentro del motor con posterioridad a la limpieza del intercooler es simplemente demasiado grande.

La limpieza del intercooler solo puede ser considerada como válida, si el único problema es que el aceite de motor se ha acumulado en el intercooler (Fig. 7). En la práctica, sin embargo, el lavado del intercooler es extremadamente complejo. Particularmente cuando se trata de grandes tuberías, como las que se encuentran en los camiones y grúas. Además, solo se pueden usar líquidos de lavado aprobados por el fabricante del vehículo y/o del componente. El uso de líquidos de limpieza inadecuados puede provocar daños materiales y la pérdida de la protección de la garantía.

Fig. 6 y Fig. 7. Crédito: behrhellaservice.com.

 

* Notas sobre la instalación de un intercooler nuevo
No importa cuál sea el motivo de la falla o del reemplazo del intercooler. Antes de la instalación de la nueva unidad, se debe investigar a fondo el motivo del daño. Las partes periféricas (turbocompresor, ventilación del cárter, recirculación de los gases de escape, entrada de aire al turbocompresor, sistema de escape, etc.) deben integrarse en el proceso de búsqueda y solución de fallas/problemas.

Fig 8 Circuito Turbocompresor Intercooler. Crédito: behrhellaservice.com.

De lo contrario, una falla puede volver a ocurrir. Por esta razón, se deben considerar los siguientes puntos:
• Verifique el recorrido del aire entre el turbocompresor y el intercooler buscando impurezas / partículas / bloqueos / reducciones en las secciones transversales.
• Compruebe el recorrido del aire entre el turbocompresor y el colector de admisión buscando impurezas / partículas / bloqueos / reducciones en las secciones transversales.
• Limpie / reemplace la canalización de aire dañada, bloqueada o sucia y sus piezas de fijación.
• Reemplace las juntas de las tuberías de aire, las conexiones de refrigerante (en el caso de los intercoolers refrigerados por agua) según sea necesario.
• Asegúrese de que todos los elementos de conexión estén apretados, que no se produzcan fugas y no se aspire “aire secundario” dentro del circuito de “aire primario”.
• Verifique la presión de sobrealimentación.(4)

 

* Veamos a continuación qué dicen las Recomendaciones generales para instalar un turbo publicadas por Turbo Diesel de Colombia Ltda.

 

Puntos de inspección y verificaciones:

 

-. Verificar si el Turbo corresponde a la aplicación para la cual fue diseñado.

 

-. Se deben cambiar los filtros de aire y aceite, así como el aceite lubricante de motor por otros totalmente nuevos y por ningún motivo debe utilizarse aceite reciclado.

 

-. Inspeccionar los sistemas de entradas y salidas del turbo para asegurar la ausencia de materiales indeseables como: fragmentos de mecanizado, virutas, tuercas, arandelas, pedazos de manguera, etc. Tenga en cuenta que partículas muy pequeñas pueden causar daño en el eje turbina o la rueda compresora. Verificar el estado de las mangueras y abrazaderas.

 

-. Los múltiples de escape, mangueras o tubos de entrada de aire y retorno de aceite tienen que estar totalmente limpios, sin dobladuras ni escapes.

 

-. Desmontar y lavar el intercooler (Solo si aplica).

 

-. En la entrada y salida de los turbos se deben utilizar empaques originales no permitiendo el uso de pegantes ni Silicona.

 

-. Verificar que los tornillos, espárragos, el múltiple se encuentren en buen estado, que no estén averiados o con fisuras. En caso de detectarse fallas se deben cambiar.

 

-. Colocar aceite limpio dentro del turbo y hacerlos girar manualmente. Esto con el fin de prelubricar los componentes internos. NUNCA SE DEBEN FRENAR LOS ROTORES DEL TURBO AL MOMENTO DE ENCENDER EL MOTOR, ya que se puede aflojar la tuerca y ocasionar daños internos.

 

-. Al montar el turbo cuidar que el drenaje de aceite quede los mas vertical posible.

 

-. Verificar que todos los tornillos de fijación del turbo se encuentren debidamente apretados. Verificar nivel de agua y de aceite.

 

-. Después de completada la instalación del turbo al sistema, poner en marcha el motor y mantenerlo operando a marcha mínima durante 5 minutos. No acelerar el motor.

 

-. Estando el motor en marcha tapar el lado de admisión de aire y verificar que el motor se apague al instante, si esto no ocurre, inspeccionar fugas en el sistema de entrada de aire.

 

* NOTAS IMPORTANTES:

 

– La tuerca del extremo del lado del compresor no debe tocarse. De hacerlo se romperá el sello adhesivo que la fija y desbalanceará el conjunto provocando la distorsión del eje.

 

– La bomba de inyección debe estar calibrada según las especificaciones del fabricante del motor. El exceso de combustible provocará el desgaste prematuro del turbo y del motor.

 

* RESPETANDO ESTAS INDICACIONES EL TURBOCOMPRESOR Y EL MOTOR TENDRÁN UNA VIDA MÁS LARGA, EVITANDO PARADAS INDESEABLES Y COSTOS ADICIONALES.(8)

 

Descargue este artículo en español en pdf: Cuidados del turbocompresor del motor

 

Bibliografía- Referencias:

(1) brighthubengineering.com/marine-engines-machinery/66033-maintenance-schedule-for-marine-auxilliary-diesel-engines/

(2)

diariomotor.com/page/2/

(3) turbo-matic.com/averias-turbos-comunes

(4) Technical Information Replacing the intercooler after a turbocharger fault – Behr Hella Service GmbH behrhellaservice.com/behr-hella-service/assets/media/ti_en_airco_ladeluftkuehler_turboschaden.pdf

(5)

cmelectronica.com.ar/noticias/como-identificar-fallas-en-un-motor-marino-diesel.html

(6)TURBO InstallatIon InstructIons: General – Garrett By Honeywell

garrett.honeywell.com/wp-content/uploads/2013/10/Turbo_Installation_91913.pdf

(7) autocasion.com/actualidad/reportajes/cuales-son-las-averias-y-cuidados-del-turbo

(8) turbodieseldecolombia.com/gallery

 

Fuentes:

Texto compilado y traducido de gruasytransportes < gruasytransportes.wordpress.com>

 

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina).

 

Tags: turbocompresor roto aceite en la admisión motor diesel(gz11), Hydrolock=cilindros inundados con aceite o con agua que se opone a la fuerza del motor de arranque y debido a ello se doblan una o más bielas, cómo evitar romper el motor por culpa del turbocompresor, 800.000 kilometros = 500.000 millas = 15.000 horas de operación, turbodiesel buenos cuidados, cooling down to stop, el motor diesel turbo debe girar en ralenti 30 segundos como mínimo antes de parar el motor,

 

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

UN TERMINAL DE CONTENEDORES PARA ESMERALDAS, ECUADOR

BOLETÍN 159: UN TERMINAL DE CONTENEDORES PARA ESMERALDAS

Eco. Luis Luna Osorio MBA                                         Diciembre 26 de 2017

El 14 de este mes, por invitación de la PUCE – Sede Esmeraldas, participé en dos oportunidades como expositor, en un breve seminario sobre las perspectivas de desarrollo nacional, regional y de la provincia “verde”. Participó también como expositor, el Ingeniero Naval Rafael Plaza Perdomo, sobre el tema:  Implementación de patio para una terminal de contenedores en el Puerto Comercial de Esmeraldas.

En un panel, en el que participamos seis personas: académicos, funcionarios públicos y docentes de la PUCE, se analizó el desarrollo del comercio internacional y el rol de los medios de pago para el impulso y la reactivación económica. Se dijo en él, que el uso del dinero electrónico no reviste mayor complejidad, pero que requiere de capacitación a los posibles usuarios; que la población objetivo posiblemente no tiene mayor interés en ese sistema y que ya lo ha demostrado en los años de vigencia y manejo por el Banco Central; que, si esa entidad monopoliza la emisión, está latente el peligro, como ya lo han advertido numerosos expertos, de que se emita dinero inorgánico, que atentaría contra la dolarización; y, que el uso de tarjetas de crédito y de débito es ya común entre las personas bancarizadas, que no llegan al 40% de la población nacional.

El tema individual que me correspondió era: “El entorno internacional para las empresas”, que lo desarrollé considerando cinco aspectos esenciales: el deterioro del ambiente global, por contaminación del aire, el suelo, los mares y la tierra; la lucha por el poder económico mundial, especialmente entre los Estados Unidos, China, India, Rusia y la Unión Europea, que en el mediano plazo favorecerá a China e India; la lenta evolución 2017 de la economía internacional, con cierto dinamismo de Estados Unidos, menor velocidad de China, lento avance de la UE y paralización o retroceso en América Latina; los vaivenes de la situación social resultante y los problemas del comercio exterior de los países, por la caída de los precios de los commodities, el incremento de las normas y los organismos supranacionales y el peso de las empresas multinacionales. Expresé que las llamadas “grandes” empresas nacionales, en el concierto mundial son pequeñas y requieren, como las MIPYMES, del apoyo del Estado para mejorar su exportación. Dije que ninguna empresa nacional consta entre las 500 mayores del mundo y que, en Latinoamérica, hay dos o tres entre las 500 principales.

Con respecto al desarrollo nacional, preocupa que el país está semiparalizado en sus actividades y decisiones gubernamentales económicas, debido a que, para el gobierno, es ahora su prioridad resolver los asuntos políticos relacionados con el juicio a Glas, la Consulta Nacional, la división de AP y la legitimidad de las elecciones del 2017, temas que se han vuelto más complicados a raíz de las declaraciones del señor Mangas, hombre de mucha confianza del presidente, esposo de la Ministra de Relaciones Exteriores y hasta hace poco Secretario de la Presidencia de la República.

A continuación resumiré los planteamientos más interesantes del ingeniero Plaza, teniendo en cuenta dos aspectos básicos: primero, desde el 2016, cruzan por el Canal de Panamá los barcos Post Panamax, con gran capacidad de carga y el país debe adaptarse a las nuevas circunstancias del transporte marítimo internacional que eso supone; segundo, el Ecuador carece de al menos un puerto que permita el ingreso de esos enormes buques portacontenedores y debe habilitar el que mejor se preste para ahorrar en construcción, costos de operación y fletes por transporte marítimo. Si se requiere de dos puertos, que uno sirva a la región norte y otro a la región sur, lo que podría significar que hay que construir Posorja para el sur y Esmeraldas para el norte, con los requisitos del sistema moderno de transporte marítimo internacional. Si se puede habilitar más puertos mejor, pero siempre que resulten convenientes para el país.

Consta en Wikipedia que San Mateo de las Esmeraldas es una ciudad puerto de Ecuador, capital de la provincia del mismo nombre, en la zona noroccidental del país. Se encuentra a 318 km de Quito. Su población supera los 160 mil habitantes. Es la undécima ciudad más poblada del país y uno de los puertos más importantes. Ofrece hermosas playas con paisajes y clima cálido. Su costa, así como sus reservas ecológicas, la hacen uno de los destinos turísticos más visitados, gozando de una temperatura favorable en todo el año.

Su suelo permite la producción de banano, cacao, arroz, maíz, palma africana, albahaca y una gran variedad de frutas tropicales. Entre las principales especies forestales están: chanul, balsa, laurel, sande, guayacán y tangaré. En ganadería destaca la crianza de ganado vacuno de carne y porcino. En Esmeraldas se encuentra la más grande Refinería Estatal de Petróleo, dependiente de Petroecuador, y el puerto petrolero de Balao. Existen industrias manufactureras, madereras y de productos químicos y derivados de petróleo

La propuesta del ingeniero Plaza busca mejorar las condiciones del Puerto de Esmeraldas, de manera que se torne en un factor importante de desarrollo nacional, regional y provincial, porque según él, ese puerto reúne condiciones naturales para la operación comercial, que no posee ninguno de los otros puertos nacionales. Si se dinamiza el país y se logra hacer de Esmeraldas un centro de atracción marítima, no hay duda de que esa ciudad se volvería un núcleo de desarrollo que adquiriría un ritmo veloz de crecimiento económico y de mejoramiento de las condiciones de vida de sus habitantes.

Ese puerto está ubicado al norte de la Provincia de Esmeraldas, en la desembocadura del río Esmeraldas al Océano Pacífico. Su localización geográfica está entre los meridianos 79º-38’ Oeste y 79º-39’ Oeste y los paralelos 00º-59’ Norte y 01º-02’ Norte.

En cuanto a la situación regional, la idea es que el puerto de Esmeraldas se convierta en la puerta ideal de acceso al mar de la región norte del país y de varias provincias centrales, para las importaciones y las exportaciones, para que tengan mayor facilidad y menor costo de transporte marítimo internacional para los productos de su interés. Por supuesto, el mejoramiento del puerto permitiría también el ingreso de los grandes buques de turismo, no solo de los de carga, con lo cual mejorarían mucho los pueblos y los negocios de Atacames, Súa y otros lugares.

En 1979 se inauguró el Puerto Comercial de Esmeraldas, teniendo una limitada conectividad vial terrestre con el resto del país, en especial con su zona de influencia, que abarca las provincias de Santo Domingo de los Tsáchilas, Pichincha, Cotopaxi, Tungurahua, Napo, Francisco de Orellana (ruta E-20, E-30, E-35); Carchi, Imbabura, Sucumbíos (ruta E-15, E-10).

A partir de 2007, con la inversión gubernamental en infraestructura vial, el puerto tuvo un significativo repunte en el tráfico de carga y de buques, moviendo contenedores y diferentes clústeres de carga, con un volumen cercano a los 100 000 TEU anuales, desde y hacia las provincias antes citadas. [1]_/

Sobre esa base, la ciudad de Esmeraldas se ha transformado en una plataforma o nodo logístico natural de la región norte del país, contando con los puertos comercial, petrolero y pesquero, el aeropuerto y zona de apoyo logístico, apoyados con una Aduana modernizada. Sin embargo, necesita de obras complementarias, que le permitan cumplir eficientemente esa función, siendo una de ellas la construcción de un patio para una terminal de contenedores en el Puerto Comercial de Esmeraldas.

Esmeraldas es el único puerto del Ecuador que, en el rumbo o línea de enfilada que deben seguir los buques desde la boya de mar hasta la dársena del puerto, tiene profundidades del lecho marino que van desde los 50 hasta los 200 metros, localizadas al ingreso de la dársena. Esta particularidad natural lo acredita como puerto de aguas profundas, que debería aprovecharse mucho más, sobre todo pensando en el tráfico de los buques Post Panamax.

Los buques Post Panamax II, del año 2000 en adelante, tienen 43 metros de manga, esto es 17 filas de contenedores sobre cubierta, con una capacidad de 6000 a 8500 TEU. Los buques New Panamax o Neo-Panamax (NPX) del año 2014 en adelante, son buques diseñados para poder pasar con exactitud a través de las compuertas del ensanchado Canal de Panamá, que fue inaugurado en junio del 2016. Estos barcos tienen 49 metros de manga, esto es 19 filas de contenedores sobre cubierta y 366 metros de eslora (22 bays) con una capacidad de 12000 TEU a 14500 TEU. [2]_/

La estratégica posición geográfica del Puerto Comercial hace que, al contar con los servicios de un terminal de contenedores, tenga la posibilidad de ser a la vez un puerto de transbordo de contenedores que se movilicen en la región, sobre todo desde y hacia Colombia, país que, en el Océano Pacífico. sólo cuenta con el Puerto de Buenaventura. Además, permitirá incorporar el sistema de conectividad marítima de cabotaje o de rutas cortas conocidas como Autopistas de Mar (Short Sea Shipping); que es una alternativa para movilizar el gran volumen de mercancías de intercambio comercial binacional con Colombia, que actualmente se transportan con dificultades por vía terrestre, por Rumichaca. En cuanto a la conectividad con el puerto de Callao, en el Perú, es factible, por el intercambio comercial registrado como parte de la Comunidad Andina.

Por ahora, en este puerto se ha improvisado un patio de contenedores, con una superficie de cuatro hectáreas, empleando un sistema de equipos para manipular contenedores buque-puerto, de grúas propias de las naves para el embarque y desembarque, de tracto-remolques para el desplazamiento, y de cargadores frontales tipo reah staker para apilar en la zona de almacenamiento, lo cual causa demoras operacionales.

Con el objetivo de mejorar el servicio, se plantea determinar la factibilidad de redistribución espacial del patio para una terminal de contenedores, a ubicarse en la parte posterior de la escollera principal del puerto, de 400 metros de longitud. La metodología empleada consiste en optimizar el dimensionamiento del patio con celdas TEU para contenedores, utilizando diferentes sistemas de equipos portuarios y en determinar la incidencia económica que cada sistema genera, partiendo de la previsión de tráfico anual de contenedores que transitan en los corredores logísticos, dentro y fuera de la zona de influencia del puerto.

Se determinó que el sistema de equipos de grúas-pórtico de patio es el más conveniente, permitiendo 400.000 TEU anuales en una extensión de 18.50 hectáreas, de las cuales 11.50 hectáreas son exclusivas para el apilamiento y circulación de los equipos, con el menor costo de movimiento por TEU.

Dice el ingeniero Plaza que, con las tarifas portuarias actuales es factible financiar la construcción de la terminal de contenedores y la adquisición de los equipos portuarios, cuyo valor es USD 87 320 000. La configuración y disposición óptima de la terminal es para 3 312 celdas TEU, demarcadas para el apilamiento en sentido paralelo al muelle. Se aplicó la herramienta de análisis de orden de prelación de riesgo para toma de decisión, comprobándose que el sistema de equipos grúas- pórtico presenta menos riesgos.

Los pronósticos de tráfico señalan un equilibrio entre las importaciones y exportaciones, con una tasa de crecimiento anual del 5%. Los contenedores movilizados por la terminal en los siguientes 20 años, a partir del año 2020, se calcularon con proyecciones que tienen una tasa compuesta de crecimiento anual del 5%. Sobre esa base, en la terminal de contenedores, en el año 2020 se manipularán 400 000 TEU, de los cuales se prevé que el 50% se trasbordará en el tráfico de la región, el 90% de ellos cargados y el 10% vacíos.  Que la manipulación del resto de los contenedores es igual, tanto para la importación como para la exportación. El 40% de los contenedores de importación y de exportación que salgan cargados, serán LCL, porque se espera a esa fecha un desarrollo muy dinámico de la Zona de Apoyo Logístico ZALSA C.A.

[1] _/ Un TEU corresponde a un contenedor de 20 pies cúbicos.

[2] _/ https://gruasytransportes.wordpress.com/2017/04/08/barcos-portacontenedores-tipo-panamax-tipo-neopanamax-y-otros/

Sede del Colegio de Economistas – Ecuador:

Calle Iñaquito N 35 37 y Juan Pablo Sanz
Telfs.: 2455 200 / 2457 466
ecocol@uio.satnet.net

 

Fuentes:

colegiodeeconomistas.org.ec/boletin-159-un-terminal-de-contenedores-para-esmeraldas/

gruasytransportes

Tags: BOLETÍN 159: UN TERMINAL DE CONTENEDORES PARA ESMERALDAS – gruasytransportes.wordpress.com (gz11),

====================

Otros posts relacionados:

https://gruasytransportes.wordpress.com/2017/04/08/barcos-portacontenedores-tipo-panamax-tipo-neopanamax-y-otros/

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema.org

Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema.org

Compilado y traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

La Asociación de Fabricantes de Equipo Portuario (su abreviatura en inglés PEMA) publicó un documento de información en inglés, cuya intención es la de ser una guía práctica sobre la inspección estructural, de grúas pórtico de muelle (su abreviatura en inglés STS), de grúas pórtico de patio montadas sobre rieles (su abreviatura en inglés RMG), y de grúas pórtico de patio montadas sobre neumáticos (su abreviatura en inglés RTG).

Foto 1

Según el documento mencionado:

2 – FACTORES CRITICOS DE LA FALLA (o fractura) POR FATIGA

El riesgo de una falla por fatiga es el producto de la probabilidad y de la consecuencia de la falla.
Hay tres factores críticos: dos se relacionan con la probabilidad de esa falla y uno se relaciona con las consecuencias de esa falla.
Existen dos factores principales que controlan la probabilidad de una falla por fatiga:

1. La cantidad y la amplitud de los ciclos de los esfuerzos (tensiones) en un punto particular de un miembro estructural determina la probabilidad de crecimiento de fisuras, también llamado falla (o avería o daño) por fatiga.

Una mayor cantidad de ciclos de esfuerzos y mayores amplitudes de esos esfuerzos en cada ciclo, aumentan el daño y la probabilidad de falla. Para muchos miembros estructurales de grúas, la carga sobre ese miembro estructural varía en función diecta de la magnitud y de la posición de la carga en movimiento.

2. Las concentraciones de esfuerzos (stress), las cuales incrementan localmente la amplitud de los esfuerzos, y aumentan la probabilidad de crecimiento de la fisura. Las concentraciones de esfuerzos son lugares ubicados en un miembro estructural donde, debido a discontinuidades en su geometría, las tensiones locales son mucho mayores que el promedio de las mismas en toda la sección. Las concentraciones de esfuerzos se ubican típicamente en las discontinuidades tales como las conexiones, y especialmente en las soldaduras.

Los factores menores que también afectan la evolución de la fatiga incluyen las tensiones residuales de la fabricación, las propiedades del material, la carga aplicada sobre la estructura y la temperatura.

Foto  2.1: Fisura en un miembro crítico a la fractura (FCM) en el extremo inferior del tubo único diagonal superior.

La consecuencia de la falla es el tercer factor crítico que afecta el riesgo de falla. Si la falla de un miembro estructural puede dar como resultado, la caída de la carga, o el colapso de la grúa u otra inestabilidad peligrosa, la consecuencia de la falla es significante. Si ese miembro estructural, o una parte del mismo, está cargada en tensión (esfuerzo) a ese miembro se lo conoce como un miembro crítico a la fractura o FCM. Inherente a esta definición es que un FCM no posee una ruta de carga redundante y que sea viable.

Los componentes estructurales de la grúa de mayor riesgo son los FCM que experimentan un daño severo por fatiga, en particular en las ubicaciones con concentraciones de esfuerzos significativas.

Después de que una grúa es construída, el riesgo de fatiga es mitigado típicamente mediante la búsqueda de fisuras provocadas por fatiga y reparándolas antes de que un miembro estructural se quiebre ( las mejoras de los detalles pobres del diseño respecto de la fatiga estructural son posibles, pero rara vez se realizan). Este documento proporciona una guía para ayudar a encontrar fisuras a través de la comprensión de estos tres factores críticos.

2.1 MÉTODOS DE INSPECCIÓN E INTERVALOS DE INSPECCIÖN

Aunque la tasa de crecimiento de las fisuras por fatiga es controlada por muchos factores altamente variables, la probabilidad de falla de un miembro en particular, en algún momento de su vida útil, puede ser averiguada en forma aproximada utilizando datos obtenidos en pruebas de muestras reales con detalles de fatiga similares, con cálculos de la amplitud de los esfuerzos que experimenta el miembro estructural, y con estimaciones de la cantidad de ciclos de carga.

Fotos 2.2 y 2.3: Fracturas por fatiga de miembros diagonales en trolleys (carros) con maquinaria de izaje (hoist) ubicada en el carro.

La mejor manera de reducir la probabilidad de una falla peligrosa es realizar inspecciones exhaustivas de los FCM con intervalos de tiempo calculados en base a la tasa de probabilidad de crecimiento de las fisuras. Al decir inspecciones queremos decir inspecciones visuales y otros métodos no destructivos, incluyendo el ultrasonido, las tintas penetrantes y los exámenes por partículas magnéticas realizados por un inspector de soldadura certificado.

Tales inspecciones pueden ser programadas para mantener una confiabilidad estructural consistente.

Idealmente, el fabricante de grúas proporciona al usuario un programa de mantenimiento estructural que especifica los lugares de inspección, los métodos y los intervalos.

Si el programa de inspección no está disponible, puede valer la pena hacer inspecciones visuales regulares en los lugares críticos de la grúa. Aclaramos, sin embargo, que la utilidad de las inspecciones visuales como único método para detectar fisuras peligrosas es limitado:

1. La inspección visual no detectará defectos dentro del material, como pueden detectarse mediante un examen con ultrasonido.

2. Las fisuras superficiales pueden no ser visibles hasta que ya han crecido demasiado hasta llegar a un tamaño crítico de fractura.

La figura 2.4 muestra las fases del crecimiento de la fisura. Las fisuras pueden ser detectadas en la Región 2 y ser reparadas. En la Región 3 la fractura es inminente. Para miembros estructurales críticos, los intervalos de inspección pueden ser determinados en función de la cantidad de ciclos requeridos para ir desde la Región 2 a la Región 3.

 

Figura 2.4: muestra las fases de crecimiento de la fisura.

2.2 LA CANTIDAD Y LA AMPLITUD DE LOS CICLOS DE ESFUERZOS

En cualquier grúa, el movimiento de la carga mediante el carro (trolley) y la variación entre los estados de grúa cargada y grúa descargada crean tensiones (esfuerzos) fluctuantes en la estructura.

En las grúas RMG (pórticos montados sobre rieles), un daño significativo por fatiga puede también ser inducido por el movimiento del pórtico (movimiento del gantry). Las cargas provenientes de la aceleración y del viento también crean cargas fluctuantes, pero la de la carga en movimiento es generalmente la más significativa de todas.

Figura 2.5: Nivel de esfuerzo fluctuante típico en un punto sobre una grúa operando. Cada conjunto compuesto por un pico y un valle es un ciclo.

La cantidad de ciclos de este esfuerzo fluctuante y la amplitud del esfuerzo, particularmente en la amplitud del esfuerzo donde el material se separa, son los factores más importantes para evaluar el potencial de que ocurra una fisura por fatiga.

Un mayor daño por fatiga significa que existe una mayor probabilidad de fisuras y que la confiabilidad es menor.

Cuanto mayor sea la amplitud de los esfuerzos – esto es la diferencia entre el esfuerzo mínimo y el esfuerzo máximo-, mayor será la tasa (o ritmo) de crecimiento de las fisuras por cada ciclo de carga. La influencia de la amplitud de los esfuerzos en la confiabilidad generalmente se triplica. (NdeT: Es decir que el ritmo de crecimiento de las fisuras por cada ciclo de carga crecerá tres veces por cada vez que exista un aumento de la amplitud de los esfuerzos).

Cuantos más ciclos haya, más crecerán las fisuras. La influencia de la cantidad de ciclos en la confiabilidad es lineal.

2.3 CONCENTRACIONES DE ESFUERZOS

Existen discontinuidades en todas las estructuras de acero, especialmente en las uniones soldadas. Cuando la estructura es cargada en forma repetitiva con esfuerzos, las fisuras crecen en dirección perpendicular a la dirección del esfuerzo.

El ritmo de crecimiento de la fisura depende parcialmente del nivel del esfuerzo. Las concentraciones de esfuerzos causan niveles locales más altos de esfuerzos y aceleran el crecimiento de la fisura.

Las placas adosadas a la estructura y los cambios en la geometría son discontinuidades que causan concentraciones de esfuerzos particularmente en las soldaduras. Las fisuras pueden producirse en cualquier lugar en el acero, pero generalmente se producen en las uniones soldadas.

Imagen 2.6: Ejemplos de placas adosadas y soldadas con las concentraciones de esfuerzos que surgen: En la parte superior, una barra está soldada en forma perpendicular a una placa. En la parte inferior, una placa está sobremontada encima de otra placa.

La Imagen 2.7 muestra las ubicaciones típicas de los comienzos de las fisuras y el crecimiento posterior de las fisuras debido a las concentraciones de esfuerzos que multiplican la amplitud de los esfuerzos. Las fisuras crecen típicamente a partir de pequeñas muescas creadas por la dilatación provocada por el calentamiento y la posterior contracción del material durante el proceso de soldadura.

Imagen 2.7: ejemplos de los comienzos de fisuras y el crecimiento de las mismas debido a las concentraciones de esfuerzos.

Imagen 2.8: Mirando hacia abajo en una placa de conexión de un tirante que sufrió una falla por fatiga

……

2.4 DÓNDE CRECEN LAS FISURAS – UNA DISCUSIÓN PARA LAS ESTRUCTURAS DE LAS GRÚAS

Para que las fisuras crezcan debido a la fatiga provocada por la carga debe existir un esfuerzo cíclico en una ubicación particular. Dónde exista una discontinuidad geométrica habrá una concentración de esfuerzo, una mayor amplitud de esfuerzos y una mayor probabilidad de que se produzcan fisuras por fatiga.

Cuando busque fisuras por  fatiga que sean peligrosas en una grúa, en particular:

1. Búsquelas en los miembros críticos a la fractura o FCM.

2. Sobre los FCM, busque las regiones que experimentan un daño significativo por fatiga.

3. Dentro de esas regiones, busque donde existan cambios en la sección o en la forma de la estructura y donde existan discontinuidades geométricas, y particularmente en las soldaduras ubicadas en estas áreas.

Los lugares típicos de aparición de fisuras  en los miembros principales que están en tensión en la estructura (miembros tensores), o en los tramos de esos miembros estructurales, están ubicados en los extremos de las placas de conexión, en los accesorios adosados a las estructuras  y en las soldaduras envolventes ( en inglés, wrap around welds) realizadas alrededor de cualquier placa, y también en los cambios en la sección transversal de un miembro estructural.

(NdeT: También se encontrarán fisuras donde el acero no se haya amolado correctamente y haya quedado con grandes rugosidades o rebabas.)

(NdeT: Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica.)

Descargar este artículo en español en PDF: Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema

El documento completo en inglés puede ser descargado en: http://www.pema.org/download476

Fuentes:

Texto en español de gruasytransportes < gruasytransportes.wordpress.com >

Texto original en inglés: pema.org

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: simo hoite crane pdf (gz11), Simo Hoite, Liftech, miembro crítico a la fractura,  stress range= amplitud de los esfuerzos, crack= fisura, stress= esfuerzos, rate of growth= ritmo o tasa de crecimiento, stay=tirante, soldaduras envolventes=wrap around welds, fisura, soldadura, pema port equipment manufacturers paper pdf, Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica,

Otros posts relacionados:

https://gruasytransportes.wordpress.com/2016/06/05/inspeccion-estructural-en-gruas-portuarias-1/

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

 

 

 

 

 

=============

English versión:

Practical Structural Examination in Ports and Terminals | A PEMA Information Paper.

The above mentioned paper explains:

2 | CRITICAL FACTORS OF FATIGUE FAILURE

The risk of a fatigue failure is the product of the probability and the consequence of the failure. There are three critical factors: two relate to probability and one to the consequences of that failure.
Two primary factors control the probability of fatigue fracture:
1. The number and range of tension stress cycles at a particular point in a structural member determine the probability of crack growth, also called fatigue damage. More stress cycles and greater tension stress range in each cycle increase the damage and the probability of failure. For many members on cranes the loading varies directly in relation to the magnitude and position of the moving load.
2. Stress concentrations, which increase the local stress range, increase the probability of crack growth. Stress concentrations are locations on a member where, due to discontinuities in geometry, local stresses are much larger than the average across the section. Stress concentrations are typically found at discontinuities such as connections, especially at welds.
Lesser factors affecting fatigue performance include residual stresses from fabrication, material properties, loading rate, and temperature.
Picture 2.1: Crack in FCM at lower end of single upper diagonal pipe.
The consequence of failure is the third critical factor affecting risk. If failure of a structural member can result in dropping the load, collapse of the crane or other dangerous instability, the consequence
is significant. If such a member, or a portion of it, is loaded in tension the member is referred to as a
fracture critical member or FCM. Inherent in this definition is that an FCM does not have a viable
redundant load path.
The highest risk crane structural components are the FCMs experiencing severe fatigue damage,
in particular at the locations with significant stress concentrations.
After a crane is built, mitigating fatigue risk is typically done by finding the fatigue cracks and repairing them before a member breaks (improvements of poor fatigue details is possible, but rarely done). This
paper provides guidance to help find cracks through understanding of these three critical factors.
2.1 INSPECTION METHODS AND INTERVALS
Although the rate of fatigue crack growth is controlled by many highly variable factors, the probability of
failure of a particular member, at some point in its life, can be approximated using data from testing of actual samples with similar fatigue details, calculations of the stress range the member experiences, and estimates of the number of load cycles.
Pictures 2.2 and 2.3: Fatigue fractures of diagonal members on machinery trolleys.
The best way to reduce the probability of a dangerous failure is to make thorough inspections of FCMs at intervals calculated based on the probable rate of crack growth. By inspections we mean visual and
other non-destructive methods including ultrasonic, dye-penetrant, and magnetic particle examination by a certified weld inspector. Such inspections can be timed to maintain a consistent structural reliability.
Ideally, the crane maker provides the user with a structural maintenance program that specifies
inspection locations, methods and intervals.
If an inspection program is not available, it can be worthwhile to make regular visual inspections at the
critical locations on the crane. We note, however, that the usefulness of visual inspections alone to
detect dangerous cracks is limited:
1. Visual inspection will not detect flaws inside the material, as can be detected by ultrasonic examination.
2. Surface cracks may not become visible until they have grown to a fracture critical size.
Picture 2.4 shows phases of crack growth. Cracks can be detected in Region 2 and repaired. In Region 3 fracture is imminent. For critical members, inspection intervals can be determined based on the number of cycles required to go from Region 2 to Region 3.
Picture 2.4: Phases of crack growth.
2.2 NUMBER AND RANGE OF STRESS CYCLES
On any crane the moving of the load by the trolley and the variation between loaded and unloaded
states creates fluctuating stresses in the structure.
On RMG cranes significant fatigue damage can also be induced by the gantry motion. Loads from
acceleration and wind also create fluctuating loads, but the moving load is typically the most significant.
Picture 2.5: Typical fluctuating stress level at one point on a working crane. Each peak and trough is one cycle.
The number of cycles of this fluctuating stress and the stress range, particularly in the tension range where the material is pulled apart, are the most important factors in evaluating the potential for fatigue cracking.
Higher fatigue damage means there is greater probability of cracking and reliability is lower.
The greater the stress range—the difference between the minimum and maximum stress—the greater the rate of crack growth per cycle of load. The influence of the stress range on reliability is typically cubed.
The more cycles, the more the cracks will grow. The influence of the number of cycles on reliability is linear.
2.3 STRESS CONCENTRATIONS
There are discontinuities in all steel structures, especially at welded joints. When the structure
is loaded repeatedly in tension, the cracks grow perpendicular to the stress direction.
The rate of growth partially depends on the stress level. Stress concentrations cause higher levels of
local stress and accelerate crack growth.
Attachments to plates and changes in geometry are discontinuities that cause stress concentrations,
particularly at the welds. The cracks can occur anywhere in steel, but they usually occur at welded
connections.
Picture 2.6: Examples of welded attachments and the stress concentrations that arise: At the top, a bar is welded perpendicular to the plate. At the bottom, a plate is lapped over another plate.
Picture 2.7 shows typical locations of crack initiation and subsequent crack growth due to stress  concentrations that multiply the stress range. The cracks typically grow from tiny notches created by the heating and subsequent shrinkage of the welding process.
Picture 2.7: Examples of crack initiation and growth due to stress concentrations.
Picture 2.8: Looking down on a forestay connection plate that failed in fatigue.
……
2.4 WHERE CRACKS GROW – A DISCUSSION FOR CRANE STRUCTURES
For cracks to grow from fatigue loading there must be a cyclic tension stress at a particular location. Where a geometric discontinuity is present there will be a stress concentration, a greater stress range, and a higher probability that fatigue cracks will occur.
When looking for dangerous fatigue cracks on a crane, in particular:
1. Look for FCMs
2. On the FCMS look for the regions that experience a significant fatigue damage
3. Within these regions look at changes in section and at geometric discontinuities, and particularly
at the welds in these areas.
Typical cracking locations in main tension members, or portions of members, are at the ends of connection plates, at attachments and wrap around welds, and at changes in cross section.

Sources:

gruasytransportes

pema.org

Compiled by Gustavo Zamora for gruasytransportes.wordpress.com

Extracted from the Paper: Practical Structural Examination in Ports and Terminals | A PEMA Information Paper – published by pema.org

Read the complete book at:

http://www.pema.org/download476

(*) Gustavo Zamora is a cranes expert. He lives and works at Buenos Aires (Argentina).

Tags: simo hoite crane pdf (gz11), Simo Hoite, Liftech, miembro crítico a la fractura,  stress range= amplitud de los esfuerzos, crack= fisura, stress= esfuerzos, rate of growth= ritmo o tasa de crecimiento, stay=tirante, soldaduras envolventes=wrap around welds, fisura, soldadura, pema port equipment manufacturers paper pdf, Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica,

You can reproduce previously published material as a quotation, and the source of
the quotation must be cited as https://gruasytransportes.wordpress.com

Heridas por inyección de aceite hidráulico a presión

Heridas por inyección de aceite hidráulico a presión

5 hechos aleccionadores sobre las lesiones por inyeccion de aceite a presion

Escrito por Brendan Casey de hydraulicsupermarket.com

Traducido y compilado por Gustavo Zamora*, Buenos Aires (Argentina) para gruasytransportes.

Foto: Ambulancia (Crédito: northadamsambulance.com )

Hace algún tiempo, la Sociedad Internacional de Energía Hidráulica, realizó un semiinario web -en inglés, webinar- sobre la prevención y el manejo de las lesiones por inyección de fluidos a presión. Allí se citó un estudio de Snarski y Birkhahn, dos médicos del departamento de urgencias del Hospital Metodista de Nueva York, que contenían algunas estadísticas muy aleccionadoras:

– Las lesiones por inyección de fluidos (hidráulicos) son relativamente raras, con alrededor de 600 incidentes por año en Estados Unidos de Norteamérica. Esa es la buena noticia. La mala noticia es que eso significa que su médico promedio de urgencias puede no reconocer la gravedad de la situación cuando esta sucede.


– Las pistolas de engrase a alta presión y los sistemas de engrase a alta presión representan el 57% de las lesiones por inyección de fluídos. La pintura, el aceite hidráulico y los fluídos similares representan el 18%. Y los inyectores de combustible diesel el 14%.

-El porcentaje de incidencia total de la amputación médica resultante de tales lesiones por inyección de fluídos es del 48%. Pero si la presión de inyección es mayor a 482 bares (unas 7000 psi), entonces la tasa de amputación se aproxima al 100%.El tiempo promedio transcurrido entre que se produce la lesión y la búsqueda de atención médica es de 9 horas. Esto es atribuído a la aparente naturaleza benigna de la inyección inicial de fluído, combinado con una falta de conciencia de la gravedad de este tipo de lesiones.

– Es inquietante notar que, cuando transcurren 10 horas o más entre el momento en que se produce la lesión y la intervención médica, la tasa de amputación se aproxima también al 100%.


En pocas palabras: las lesiones por inyección de fluidos hidráulicos son emergencias médicas que típicamente requieren intervención quirúrgica para liberar el líquido inyectado y así limitar el daño que causa a los tejidos. Esto es algo que todos los que trabajamos en o cerca de máquinas hidráulicas necesitamos saber. Así que por favor reenvíen esto a sus colegas.

Fuente:

hydraulicsupermarket.com/blog/all/5-sobering-facts-about-hydraulic-oil-injection-injuries/

===============

Agregamos un valioso artículo publicado en la Red Proteger sobre los accidentes y lesiones por inyección de fluído hidráulico:

Accidente Aceite Hidráulico – Red Proteger

Incidente de Inyección Hidráulica
El texto original fue adaptado por Gustavo Zamora*, Buenos Aires (Argentina) para gruasytransportes.

¡Una advertencia para todos!

Aberdeen – Shell

Lesión en mano por intrusión causado
por inyección hidráulica a alta presión

 

Antecedentes

‘ El fluido usado fué un aceite mineral
desconocido hoy en día

º La presión ejercida por el fluido fué
aproximadamente de 630 bares ( unas 9150 libras)

‘ El equipo que se estaba usando era
una tijera para corte de metal utilizada
en accidentes de tránsito para
liberar a los ocupantes del vehículo accidentado.

‘ El lugar del accidente fue un campo
de entrenamiento para bomberos

‘ El análisis de riesgo fué hecho en el
lugar del accidente y el EPP
seleccionado era insuficiente

Eventos

La sesión de entrenamiento se realizaba
bajo condiciones controladas dentro de los
permisos de la brigada de entrenamiento.

El lesionado ayudaba en la práctica para
cortar un vehiculo usando tijeras operadas
a alta presión.

La práctica normalmente contemplaba que
las mangueras del equipo de corte fueran
cargadas por los instructores.

La manguera cedió a la presión ejercida
rompiéndose en una conexión y golpeando
la presión del fluído en el EPP (guantes
de cuero) del instructor

¿Que paso después?

El instructor fué llevado a emergencias y el
diagnostico inicial fué “cuidar la limpieza de
las heridas y salvar los restos
desprendidos”

Por suerte un especialista médico
observaba las prácticas médicas e intervino en forma
oportuna al lesionado.

El aceite mineral había comenzado a dañar
poco a poco los tejidos grasos blandos y
empezó a contaminar el brazo.

Fué necesario realizarle 5 (cinco) operaciones para
eliminar la contaminación de aceite y para evitar
perder el brazo.

La herida no podía ser cerrada debido al
daño del tejido fino ocasionada por el aceite
hasta semanas después del accidente.

Resultados

‘ El instructor quedó disminuído en su
brazo para poder realizar grandes
esfuerzos y quedó con una severa discapacidad de
su mano.

º El fluido hidraulico usado fué cambiado
a “Aero Shell Fluid 4”.

º La brigada contraincendio ha
compartido su experiencia con otras
brigadas asociadas.

‘ El instructor tiene una demanda contra la
brigada de entrenamiento y contra el
fabricante del equipo desde hace dos
años.

‘ Aún no se tienen los resultados finales
del litigio.

Lecciones aprendidas para el CPGC

Se deberán de revisar y/o asegurar las condiciones actuales de los
conectores y mangueras de los equipos similares existentes (Compresores de alta presión, equipos Hy Tork, Sistemas hidráulicos de grúas fijas y grúas móviles, Prensas Hidráulicas, etc.)

Se deberán de revisar los requisitos de seguridad que
contemplan los procedimientos que involucran a estos equipos
sin dejar de lado su desarrollo paso a paso.

Se deberá de tener especial cuidado en no cambiar los
componentes y fluidos garantizados por cada fabricante para
garantizar la integridad de los equipos y reducir la posibilidad
de fallas similares al incidentes mostrado.

Se debera de difundir este incidente a toda la linea de mando

de cada unidad de negocio y talleres.

Descargar este artículo de gruasytransportes en pdf: Heridas por inyección de aceite hidráulico a presión _ Grúas y Transportes
Descargue el pdf original mencionado en: Accidente Hidraulico Red Proteger en pdf

Fuente del pdf: http://www.redproteger.com.ar/biblioteca/accidente/07.pdf

===============

Comentario de gruasytransportes:

Ante cualquier accidente de este tipo en Ciudad de Buenos Aires acuda al Hospital Fernandez.

===============

Fuentes:

hydraulicsupermarket.com/blog/all/5-sobering-facts-about-hydraulic-oil-injection-injuries/

redproteger.com.ar/biblioteca/accidente/07.pdf

Compilación y traducción de gruasytransportes <gruasytransportes.wordpress.com>

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: 5 sobering facts about oil injection injuries (gz11), ante cualquier accidente de este tipo en Ciudad de Buenos Aires acuda al Hospital Fernandez,

Otros posts relacionados:

https://gruasytransportes.wordpress.com/2017/05/28/guia-para-mangueras-hidraulicas-en-gruas-moviles-fem/

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

SCT Salerno elige grúas Liebherr LHM 600

SCT Salerno elige grúas Liebherr LHM 600

Traducido por Gustavo Zamora*, Buenos Aires (Argentina) para gruasytransportes.

 

Publicado el 30 de agosto de 2017

w20170830.557096_59a68c395b12

La terminal de contenedores de Salerno (SCT) en Italia ha recibido tres nuevas grúas móviles portuarias marca Liehherr modelo LHM 600 HR.

La empresa SCT del Grupo Gallozzi ha adquirido las tres grúas en su versión de torre extendida (en inglés, HR “High Rise”) que proporciona un punto de pivote de la pluma con mayor altura y una cabina también más alta para que el operador tenga una mejor visión sobre el barco. También han recibido en SCT la entrega de dos apiladoras de contenedores ( en inglés, reachstackers) marca Liebherr modelo LRS 545 nuevas.

Se cree que SCT será un nuevo cliente de las grúas móviles portuarias Liebherr LHM y de las reachstackers Liebherr. Históricamente, a lo largo de muchos años, el proveedor de SCT en lo que respecta a sus grúas móviles portuarias que no fueran fabricadas en Italia, ha sido Gottwald, más precisamente desde el año 1991.

La decisión de cambiar a Liebherr para esta adquisición no refleja ninguna insatisfacción con Gottwald, subraya SCT, añadiendo que Gottwald siempre les ha dado un gran apoyo.

La empresa añade que los precios de las grúas Liebherr LHM 600 y el precio del modelo equivalente de Gottwald eran aproximadamente los mismos – alrededor de 4 millones de Euros por cada grúa – y también lo es el nivel esperado de confiabilidad.

Sin embargo, Liebherr pudo ofrecer un plazo de entrega entrega de las grúas LHM 600 HR más corto que el de las grúas Gottwald en esta ocasión.

TRENI-PER-LIMA

Foto de una grúa Gottwald en SCT Salerno Container Terminal (Crédito: gallozzi.com )

Fuentes:

worldcargonews.com/htm/w20170830.557096.htm

gallozzi.com

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tag: SCT Salerno opts for Liebherr Gallozzi,Konecranes Gottwald,Liebherr,Salerno Container Terminal, Mobile harbour crane (gz11), Liebherr vs Gottwald, precio Liebherr LHM 600 HR High Rise, Gottwald,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Moda y grúas en el Puerto de Buenos Aires – by Viva- Fashion and cranes at Port of Buenos Aires

Moda y grúas en el Puerto de Buenos Aires – by Viva- Fashion and cranes at Port of Buenos Aires

Fotos publicadas en la Revista Viva del 20 de Agosto 2017.

La Revista Viva es la revista del diario Clarín.

 

1

2

3

4

5

6

 

7

 

8

Producción: Lorena Gersztein

Fotos: Ariel Grinberg

Modelo: Cata Nicora ( Pink Models Management)

Fuentes:

Revista Viva de Clarín.

gruasytransportes

Compilado por Gustavo Zamora*, Buenos Aires (Argentina) para gruasytransportes.

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tag: Fotos moda fashion Lhm 600 (gz11),

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.