Archivo de la etiqueta: LR

Grúa sobre orugas levanta techo del Estadio – Crawler crane lifting the roof of the Stadium

Grúa sobre orugas levanta techo del Estadio – Crawler crane lifting the roof of the Stadium

Compilado por Gustavo Zamora*, Buenos Aires (Argentina) para gruasytransportes.

Román Servicios con una grúa Liebherr LR 1600/2 estuvo montando el segundo estéreo y el cuarto estéreo, en el techo del estadio.
Configuración de la grúa:
S D B W
S 72 metros
W 24 metros
Peso del estéreo (pedazo de techo), peso neto: 114 toneladas.
Más los dispositivos, pastecas, percha, eslingas, grilletes, pistones, poleas, da un total de casi: 128 toneladas.
Radio de montaje: 41 metros aproximadamente.
Peso en la bandeja de la grúa (B): 350 toneladas aproximadamente.
Operadores José Alberto Ayala y Diego Nostro.

Cliente: TEXIMCO

Fecha: 15/1/18

Proyecto: Montaje de techo de estadio Arena Parque Roca – Ciudad de Bs As.

 

Fotos de Diego Nostro de Román Servicios:
IMG-20180120-WA0000
0- Crédito Diego Nostro de Román Servicios.
IMG-20180120-WA0001
1- Crédito Diego Nostro de Román Servicios.
IMG-20180120-WA0002
2- Crédito Diego Nostro de Román Servicios.
IMG-20180120-WA0003
3- Crédito Diego Nostro de Román Servicios.
IMG-20180120-WA0004
4- Crédito Diego Nostro de Román Servicios.
IMG-20180120-WA0005
5- Crédito Diego Nostro de Román Servicios.
IMG-20180120-WA0006
6- Crédito Diego Nostro de Román Servicios.
IMG-20180120-WA0007
7- Crédito Diego Nostro de Román Servicios.

 

IMG-20180120-WA0008

8- Crédito Diego Nostro de Román Servicios.

IMG-20180120-WA0009

9- Crédito Diego Nostro de Román Servicios.

IMG-20180120-WA0010

10- Crédito Diego Nostro de Román Servicios.

IMG-20180120-WA0011

11- Crédito Diego Nostro de Román Servicios.

IMG-20180120-WA0012

12- Crédito Diego Nostro de Román Servicios.

IMG-20180120-WA0013

13- Crédito Diego Nostro de Román Servicios.

=======================

Video:

Nombre original del video: PARQUE ROCA 29 1 18 HD

< https://www.youtube.com/watch?v=XSU9T48j46Y >

Publicado por Román Servicios en youtube el 29 Enero, 2018

=======================

Nombre original del video: PARQUE ROCA 31 1 18 full HD

 < https://www.youtube.com/watch?v=ufhCFZuEd9s >
Publicado por Román Servicios en youtube el 31 Enero, 2018

 

FB_IMG_1518060160769

14- Foto del montaje del cuarto estéreo. Crédito Diego Nostro de Román Servicios.

 

IMG_20180121_213321

15- Crédito: Román Servicios S.A. en Twitter.

DTlyGkOWkAAgHAy

16- Crédito: Román Servicios S.A. en Twitter.

Más imágenes del techo del Estadio Roca:

A parque_roca_i04

Foto de buenosaires.gob.ar/sites/gcaba/files/styles/interna_noticia/public/field/image/parque_roca_i04.jpg

 

 

B parque_roca_home02

Foto de buenosaires.gob.ar/sites/gcaba/files/styles/interna_noticia/public/field/image/parque_roca_home02.jpg

estadiointerior2

Foto de socearq.org/2.0/wp-content/uploads/2015/04/estadiointerior2.jpg

estadiointerior3

Foto de socearq.org/2.0/wp-content/uploads/2015/04/estadiointerior3.jpg

Hoja técnica en formato pdf, de una grúa similar a la utilizada en esta obra (extraída de sarens.com):

Brochure LR 1600-2

-Agradecemos la colaboración del Sr. Diego Nostro de Roman Servicios S.A. para la realizacion de esta publicación.

Fuentes:

gruasytransportes

Roman Servicios

sarens.com

liebherr.com

(*) Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: Estadio cubierto Roca LR (gz22)(gz11), Tweet de Román Servicios S.A. (@RomanServicios)(gz11), estadio roca techo,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Anuncios

Cuidados del turbocompresor del motor

Cuidados del turbocompresor del motor

Por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

 

En los buques y en las estaciones generadoras de energía, donde se exige una muy alta disponibilidad al motor diesel. Los turbocompresores del motor diesel son recorridos, esto es reparados a nuevo, en base a la cantidad de horas de operación y no en base a su condición.

 

En los motores diesel auxiliares que funcionan como generadores en los buques, se repara el turbocompresor a nuevo y se cambian sus rodamientos durante el mantenimiento programado de las 8.000 horas (1).

Algunos usuarios de motores MAN, Mercedes Benz y MTU de entre 400 y 1.000 HP de potencia, cambian los turbocompresores y luego los hacen reconstruír a nuevo cada 4.000 o 5.000 horas de trabajo.

1 Crédito: diariomotor.com.

 

* Consejos para alargar la vida útil del turbocompresor

 

Existen tareas de mantenimiento preventivo que se pueden realizar, tales como una descarbonización del turbo o una comprobación de holguras en su eje. No obstante, lo mejor para evitar que el turbo se vaya al cielo de los turbos es seguir estas pautas:

 

– Espera un par de minutos al arrancar el motor diesel y también antes de parar el motor diesel, manteniendo el motor funcionando en ralentí y si no es posible tener el motor en ralenti espere con el motor a velocidad nominal pero sin carga. Esto normalizará la temperatura del turbo y evitará que el aceite del eje se carbonice, creando sedimentos y partículas abrasivas que darán al traste con el carrete y provocarán fugas de aceite. Las paradas tras una conducción a máxima carga son especialmente delicadas.

 

– Utilice aceite de máxima calidad. Parece una obviedad, pero lo cierto es que el ahorro en aceites baratos – con propiedades lubricantes inferiores y deterioro rápido – queda completamente anulado por una rotura del turbocompresor antes de tiempo.

-No acelere el motor ni lo cargue hasta que el aceite no esté a la temperatura óptima. Cae de cajón, quieres asegurarte de que las propiedades de lubricación del aceite sean perfectas, y la viscosidad adecuada. Esto también beneficia al resto de componentes de fricción del motor.

2 Turbocompresor roto. Crédito: diariomotor.com.

 

* ¿Qué debo hacer en caso de avería del turbocompresor?

Si tu equipo lo permite para el motor de inmediato y evita males mayores como doblar una biela del motor o sacar una biela por el costado del block del motor. Los mecánicos reemplazarán el turbocompresor. El turbo volverá a funcionar adecuadamente tras la reparación. La integridad física del motor no se vería comprometida si la reparación estuvo bien realizada. (2)

 

Siempre es más económico reparar un turbo que comprarlo nuevo. En cuanto empecemos a notar síntomas de fallo (silba demasiado, falta de potencia, humo azulado, consumo de aceite…) es mejor revisar su estado y comprobar si tiene holgura axial antes de que se averíe definitivamente. Un eje desgastado acaba siempre en rotura y un turbo al romperse puede destrozar el motor por completo. Comprobar la holgura del eje del turbo no suele llevar más de una hora de mano de obra, y ese trabajo es un “regalo” comparado con las consecuencias de la rotura.

Es, entonces, mejor comprobar su estado antes de que se rompa por completo.(7)

* Falla del evaporador de gases de motor

3 Filtro del evaporador de gases (PCV). Crédito: turbo-matic.com

 

En muchos motores diesel, uno de los fallos frecuentes es la avería en el filtro evaporador de gases de motor, que suele estar compuesto por una válvula o membrana y por un filtro.

Nos podemos encontrar con que el filtro esté obstruido o petrificado por acumulación de carbonilla y que la válvula o membrana esté perforada y no actúe. En cualquiera de los dos casos, la avería se traduce en un fallo en el sistema de recirculación de vapores de motor.

Como consecuencia, nos podemos encontrar con que pase aceite hacia el circuito de aspiración de aire del turbocompresor, lo que puede provocar que el aceite llegue al sistema de admisión del motor y se cree autocombustión por ingestión de aceite. Y también, por otro lado, se puede crear una sobrepresión de gases de motor, que al no ser evacuados por el evaporador, pueden provocar daños severos en el turbocompresor e incluso en el motor. (3)

 

* Veamos a continuación qué dice el boletín de información técnica para el reemplazo del interenfriador – o intercooler- después de una avería del turbocompresor publicado en inglés por Behr Hella Service GmbH:

 

* Reemplazo del intercooler después de una avería o falla del turbocompresor

 

Puntos generales

 

Casi todos los motores diesel modernos con turbocompresor tienen un Intercooler -o interenfriador-. El aire caliente (con hasta 150 °C) comprimido por el turbocompresor es luego enfriado por el intercooler (Fig. 1) antes de llegar a la cámara de compresión. El aire comprimido es enfriado por el aire ambiente del exterior (interenfriamiento directo) o es enfriado por el refrigerante del motor (interenfriamiento indirecto).

La configuración y la función de los dos sistemas se muestra en más detalle en la hoja de información técnica “Intercooler”.

Fig. 1. Crédito: behrhellaservice.com.

 

* Razones para tener una avería y sus consecuencias

 

Junto a las razones clásicas para la falla o avería tales como

  • Daño externo (accidente, lanzamiento de grava o tierra dentro del turbocompresor).
  • Mangueras dañadas / bloqueadas.
  • Caudal de aire reducido debido a la superficie del filtro con suciedad.
  • Pérdida de refrigerante o del aire secundario que trabaja en el intercooler debido a fugas.
  • Un pobre intercambio de calor debido a la suciedad interna del intercooler (depósitos calcáreos o agentes selladores).

 

Existen otras posibilidades que también deben ser consideradas. Estas están relacionadas generalmente con la avería del turbocompresor.

En el caso de daños mecánicos al turbocompresor (Figuras. 2 a 5) o en caso de una fuga de aceite en el lado del compresor, el aceite y las virutas pueden acumularse

en el intercooler. El hecho de que este ensuciamiento / bloqueo puede conducir a una caída en el rendimiento del motor diesel es lo menos dañino que puede ocurrir. Las cosas se vuelven mucho más serias cuando el aceite o la viruta salen del intercooler y entran en la cámara de combustión. Esto a menudo conduce a una avería o falla del motor. Algunos motores sufren un episodio de sobrevelocidad – en inglés, “overrev”-, es decir que aumentan sus RPM hasta quedar destruídos después de que el turbocompresor ha sido reemplazado.

Fig. 2. Crédito: behrhellaservice.com.

 

Se puede llegar a acumular tanto aceite en el intercooler que conduzca a que este aceite se autopropulse repentinamente hacia la cámara de combustión después de la instalación del turbocompresor nuevo, que fue colocado para volver a tener la presión de sobrealimentación correcta.

En caso de que eso suceda cualquier especialista puede imaginar lo que acontece poco después que el motor se ha puesto en marcha. Para prevenir tal daño, como así también el “daño subsiguiente” (esto es que las partículas de metal se liberan luego en el intercooler y entran luego a la cámara de combustión), el intercooler y las piezas de fijación siempre deben ser examinados cuidadosamente cada vez que se reemplaza un turbocompresor.(4)

 

* En caso de que los cilindros estén inundados con aceite:

 

El motor de arranque puede verse impedido de hacer girar el motor por una causa ajena al motor en sí. El aceite pudo llegar a los cilindros e inundarlos. Esto puede producir daños severos en el motor al intentar arrancarlo, como por ejemplo doblar una biela.

La solución es sacar los inyectores ANTES DE INSTALAR EL TURBOCOMPRESOR NUEVO y hacer girar el motor con el motor de arranque durante 10 a 15 segundos sin que el motor arranque -o sea con el paso de combustible cerrado-, hasta que el aceite haya sido expulsado totalmente desde dentro de los cilindros.

Luego reinstalar los inyectores y purgar la línea de combustible. (5)y(6)

 

* Durante la instalación de Turbocompresor:
Es importante que durante todo el proceso de instalación del turbocompresor, se evite la entrada de suciedad o de elementos extraños a ninguna parte del turbo.
Cualquier suciedad o elementos extraños que entren al turbocompresor pueden causar daños catastróficos debido a la muy alta velocidad de operación del mismo (hasta 300.000 rpm). (6)

 

* DESPUES DE INSTALAR EL TURBOCOMPRESOR NUEVO:

 

-Debemos volver a hacer girar el motor con el motor de arranque durante 10 a 15 segundos sin que el motor arranque -o sea con el paso de combustible cerrado- esto ayuda a purgar/cebar el circuito de lubricación de aceite al turbocompresor al llenar las tuberías de presión de aceite de lubricación, el filtro de aceite y el turbocompresor con aceite antes de la puesta en marcha. Nota importante: tan pronto como el

el motor arranca, el turbo funcionará a alta velocidad y la falta de lubricación en estos

primeros segundos vitales pueden destruir un turbocompresor nuevo.

(5)y (6)

 

* Continuando con lo explicado en el boletín de información técnica para el reemplazo del interenfriador – o intercooler- después de una avería del turbocompresor publicado en inglés por Behr Hella Service GmbH:

 

* Motivo del daño, prueba de componentes

 

En el contexto de la sustitución de un turbocompresor, el motivo de la avería siempre debe ser investigado. De lo contrario, el turbocompresor podría fallar de nuevo en muy poco tiempo.

 

Deben ser atendidas las normas de instalación provistas por los fabricantes tanto del turbocompresor como del vehículo.

 

Aquí hay algunos ejemplos:

  • Verifique las válvulas de control y/o de conmutación y las tuberías de vacío
  • Verifique la tubería de admisión de aire y la tubería colectora de gases de escape en búsqueda de impurezas / residuos y límpielas de ser necesario
  • Verifique el filtro de aire y reemplácelo de ser necesario.
  • Reemplace la tubería de suministro de aceite al turbocompresor (una

inspección visual o una limpieza no son suficientes).

  • Verifique la tubería de retorno de aceite, límpiela, y reemplácela si tiene dudas

(las impurezas pueden entrar en el cárter de aceite y luego ser succionadas de nuevo por la bomba de aceite).

  • Lleve a cabo un cambio de aceite del motor y un reemplazo del filtro de aceite del motor.
  • No utilice agentes selladores líquidos.
  • Llene previamente con aceite el orificio de entrada de aceite del turbocompresor antes de ponerlo en funcionamiento.
  • Compruebe / limpie toda la ruta del aire entre el turbocompresor y el

motor.

  • Verifique que el intercooler no tenga residuos de aceite / impurezas, reemplácelo

si es necesario.

Fig. 3. Crédito: behrhellaservice.com.

 

Fig. 4. Crédito: behrhellaservice.com.

Fig. 5. Crédito: behrhellaservice.com.

 

* Limpieza del intercooler
La limpieza del intercooler es extremadamente problemática.
Hay diferentes opiniones sobre esto en el mercado. En muchos casos, el fabricante del equipo recomienda el reemplazo del intercooler. El intercooler siempre debe ser reemplazado en el caso de daño mecánico al turbocompresor (por ejemplo, paletas o álabes dañados, Fig. 2 a 5). No se puede garantizar que las virutas se eliminen completamente cuando se lava y enjuaga el intercooler, particularmente en el caso de intercoolers con insertos de turbulencia (Fig. 6). El riesgo de un daño posterior causado por las virutas que se liberen y sean succionadas en dirección hacia dentro del motor con posterioridad a la limpieza del intercooler es simplemente demasiado grande.

La limpieza del intercooler solo puede ser considerada como válida, si el único problema es que el aceite de motor se ha acumulado en el intercooler (Fig. 7). En la práctica, sin embargo, el lavado del intercooler es extremadamente complejo. Particularmente cuando se trata de grandes tuberías, como las que se encuentran en los camiones y grúas. Además, solo se pueden usar líquidos de lavado aprobados por el fabricante del vehículo y/o del componente. El uso de líquidos de limpieza inadecuados puede provocar daños materiales y la pérdida de la protección de la garantía.

Fig. 6 y Fig. 7. Crédito: behrhellaservice.com.

 

* Notas sobre la instalación de un intercooler nuevo
No importa cuál sea el motivo de la falla o del reemplazo del intercooler. Antes de la instalación de la nueva unidad, se debe investigar a fondo el motivo del daño. Las partes periféricas (turbocompresor, ventilación del cárter, recirculación de los gases de escape, entrada de aire al turbocompresor, sistema de escape, etc.) deben integrarse en el proceso de búsqueda y solución de fallas/problemas.

Fig 8 Circuito Turbocompresor Intercooler. Crédito: behrhellaservice.com.

De lo contrario, una falla puede volver a ocurrir. Por esta razón, se deben considerar los siguientes puntos:
• Verifique el recorrido del aire entre el turbocompresor y el intercooler buscando impurezas / partículas / bloqueos / reducciones en las secciones transversales.
• Compruebe el recorrido del aire entre el turbocompresor y el colector de admisión buscando impurezas / partículas / bloqueos / reducciones en las secciones transversales.
• Limpie / reemplace la canalización de aire dañada, bloqueada o sucia y sus piezas de fijación.
• Reemplace las juntas de las tuberías de aire, las conexiones de refrigerante (en el caso de los intercoolers refrigerados por agua) según sea necesario.
• Asegúrese de que todos los elementos de conexión estén apretados, que no se produzcan fugas y no se aspire “aire secundario” dentro del circuito de “aire primario”.
• Verifique la presión de sobrealimentación.(4)

 

* Veamos a continuación qué dicen las Recomendaciones generales para instalar un turbo publicadas por Turbo Diesel de Colombia Ltda.

 

Puntos de inspección y verificaciones:

 

-. Verificar si el Turbo corresponde a la aplicación para la cual fue diseñado.

 

-. Se deben cambiar los filtros de aire y aceite, así como el aceite lubricante de motor por otros totalmente nuevos y por ningún motivo debe utilizarse aceite reciclado.

 

-. Inspeccionar los sistemas de entradas y salidas del turbo para asegurar la ausencia de materiales indeseables como: fragmentos de mecanizado, virutas, tuercas, arandelas, pedazos de manguera, etc. Tenga en cuenta que partículas muy pequeñas pueden causar daño en el eje turbina o la rueda compresora. Verificar el estado de las mangueras y abrazaderas.

 

-. Los múltiples de escape, mangueras o tubos de entrada de aire y retorno de aceite tienen que estar totalmente limpios, sin dobladuras ni escapes.

 

-. Desmontar y lavar el intercooler (Solo si aplica).

 

-. En la entrada y salida de los turbos se deben utilizar empaques originales no permitiendo el uso de pegantes ni Silicona.

 

-. Verificar que los tornillos, espárragos, el múltiple se encuentren en buen estado, que no estén averiados o con fisuras. En caso de detectarse fallas se deben cambiar.

 

-. Colocar aceite limpio dentro del turbo y hacerlos girar manualmente. Esto con el fin de prelubricar los componentes internos. NUNCA SE DEBEN FRENAR LOS ROTORES DEL TURBO AL MOMENTO DE ENCENDER EL MOTOR, ya que se puede aflojar la tuerca y ocasionar daños internos.

 

-. Al montar el turbo cuidar que el drenaje de aceite quede los mas vertical posible.

 

-. Verificar que todos los tornillos de fijación del turbo se encuentren debidamente apretados. Verificar nivel de agua y de aceite.

 

-. Después de completada la instalación del turbo al sistema, poner en marcha el motor y mantenerlo operando a marcha mínima durante 5 minutos. No acelerar el motor.

 

-. Estando el motor en marcha tapar el lado de admisión de aire y verificar que el motor se apague al instante, si esto no ocurre, inspeccionar fugas en el sistema de entrada de aire.

 

* NOTAS IMPORTANTES:

 

– La tuerca del extremo del lado del compresor no debe tocarse. De hacerlo se romperá el sello adhesivo que la fija y desbalanceará el conjunto provocando la distorsión del eje.

 

– La bomba de inyección debe estar calibrada según las especificaciones del fabricante del motor. El exceso de combustible provocará el desgaste prematuro del turbo y del motor.

 

* RESPETANDO ESTAS INDICACIONES EL TURBOCOMPRESOR Y EL MOTOR TENDRÁN UNA VIDA MÁS LARGA, EVITANDO PARADAS INDESEABLES Y COSTOS ADICIONALES.(8)

 

Descargue este artículo en español en pdf: Cuidados del turbocompresor del motor

 

Bibliografía- Referencias:

(1) brighthubengineering.com/marine-engines-machinery/66033-maintenance-schedule-for-marine-auxilliary-diesel-engines/

(2)

diariomotor.com/page/2/

(3) turbo-matic.com/averias-turbos-comunes

(4) Technical Information Replacing the intercooler after a turbocharger fault – Behr Hella Service GmbH behrhellaservice.com/behr-hella-service/assets/media/ti_en_airco_ladeluftkuehler_turboschaden.pdf

(5)

cmelectronica.com.ar/noticias/como-identificar-fallas-en-un-motor-marino-diesel.html

(6)TURBO InstallatIon InstructIons: General – Garrett By Honeywell

garrett.honeywell.com/wp-content/uploads/2013/10/Turbo_Installation_91913.pdf

(7) autocasion.com/actualidad/reportajes/cuales-son-las-averias-y-cuidados-del-turbo

(8) turbodieseldecolombia.com/gallery

 

Fuentes:

Texto compilado y traducido de gruasytransportes < gruasytransportes.wordpress.com>

 

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina).

 

Tags: turbocompresor roto aceite en la admisión motor diesel(gz11), Hydrolock=cilindros inundados con aceite o con agua que se opone a la fuerza del motor de arranque y debido a ello se doblan una o más bielas, cómo evitar romper el motor por culpa del turbocompresor, 800.000 kilometros = 500.000 millas = 15.000 horas de operación, turbodiesel buenos cuidados, cooling down to stop, el motor diesel turbo debe girar en ralenti 30 segundos como mínimo antes de parar el motor,

 

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Mantenimiento del Motor diesel industrial o marino – Parte 1

Mantenimiento del Motor diesel industrial o marino – Parte 1

Compilado y traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

A los motores diesel industriales, así como a los motores diesel marinos los podemos encontrar hoy también en camiones,en buses, en grúas móviles, en apiladoras de contenedores (reachstackers), en embarcaciones, y en muchos otros equipos móviles pesados tanto de la industria minera como de las industrias portuaria y de transporte.

Programación de Mantenimiento del motor diesel MAN industrial o marino

 

1 Foto Motor MAN. Crédito:jimmyrogersyachtbroker.com

Servicio basado en horas de funcionamiento

Después de … horas de operación M1 M2 M3 M4 M5 M6
Después de … horas de operación M1 M2 M3 M4 M5 M6
20-60 o después de la puesta en servicio X X X
200 X X X X
400* X X X X X X
600 X X X X
800 X X X X X X
1000 X X X X
1200 X X X X X
1400 X X X X
1600 X X X X X X
1800 X X X X
2000 X X X X X
2200 X X X X
2400 X X X X X X
2600 X X X X
2800 X X X X X
3000 X X X X
3200 X X X X X X
3400 X X X X
3600 X X X X X
3800 X X X X
4000 X X X X X X

* Reapretar los bulones de la tapa de cilindros

Los siguientes trabajos deben ser realizados a intervalos cronológicos independientemente de las horas de trabajo registradas por el motor:

 

Intervalo M1 M2 M3 M4 A1 A2 M6
Intervalo M1 M2 M3 M4 A1 A2 M6
Anual X X X X X
2 Años X X
4 Años X X

Tipos de Servicio

M1 Revisar
  • El exterior del motor en búsqueda de pérdidas de aceite y de refrigerante *1)
  • Nivel de refrigerante
  • Concentración de agentes anticongelante / anti-corrosión
  • Nivel de aceite motor / nivel de aceite caja reductora *1)
  • Alarmas del motor
  • Funcionamiento de los instrumentos *1)
  • Mangueras de refrigerante en búsqueda  de pérdidas
  • Líneas de combustible en búsqueda de pérdidas
  • Tensión de la correa en V, reajustar, si es necesario, las correas en V.
  • Condición del impulsor de la bomba de agua  (NdeT: revisar el impulsor de la bomba de agua de mar o de río, en los motores marinos)
  • Abrazaderas de las mangueras de agua, conexiones de las tuberías y bulones de seguridad, reapretar, si es necesario.
  • Alineación del sistema del eje de salida del motor (en el caso de vibraciones anormales, dado que los montajes elásticos del motor pueden haberse asentado/ aplastado).
M2 Limpieza
  • Pre filtro de combustible
  • Drenar el agua del filtro auxiliar de combustible
M3 Cambiar
  • Cartuchos de los filtros de combustible *3)
M4 Cambiar
  • Aceite del motor
  • Cartucho del filtro de aceite de motor
  • Elemento filtrante del venteo del cárter
  • Filtro de aire
M5 Revisar / Regular
  • Luz de válvulas
M6 Prueba a plena carga
  • Se prueba la velocidad del motor con el equipo a plena carga *3)
A1 Cambiar
  • Ambas tapas de carga en el tanque de expansión de refrigerante
Limpieza
  • Enfriador de aire de sobrealimentación (Intercooler) / tuberías de aire de sobrealimentación / turbocompresor
  • Intercambiador de calor (haz de tubos)
A2 Cambiar
  • Refrigerante
  • Todas las mangueras (ej. líneas de alimentación y retorno de combustible, enfriador de aceite de la caja reductora principal)

*1) Los controles visuales diarios deben ser realizados por operadores capacitados

*2) Los filtros de combustible necesitarán ser cambiados más frecuentemente si existe contaminación en el sistema de combustible

*3) Plena carga = la defiición de plena carga es máxima potencia, el cómo lograr la máxima potencia del motor variará de un equipo a otro diferente.

Cuando se alcanza la cantidad de horas de operación respectivas, los trabajos de mantenimiento denominados M1 a M6 deben ser llevados a cabo por un centro de servicio autorizado MAN.

Los trabajos A1 y A2 deben realizarse en los intervalos enumerados anteriormente, independientemente de las horas de operación del motor. (*4)


Las tapas de llenado y válvulas de servicio del sistema de enfriamiento/refrigeración

2 Foto Tapas de llenado de refrigerante. Credito: < ybw.com>

Los sellos de goma en las tapas de llenado y en las válvulas de servicio (válvulas de presión negativa y de presión positiva) del sistema de enfriamiento están sujetos a un envejecimiento natural. Para evitar pérdidas en el sistema de enfriamiento junto con la pérdida de presión asociada y sus consecuencias que conducen a daños graves en el motor, reemplace las tapas de llenado y las válvulas de servicio al mismo tiempo que cambia el refrigerante (cada dos años como máximo).

Turbocompresor, solución de fallas/problemas

Si hay ruidos anormales en las tuberías de aspiración o de escape

– Compruebe los sistemas de admisión y de escape en el área del turbocompresor.

Las juntas defectuosas pueden hacerle creer que el turbocompresor está defectuoso y que, por lo tanto, debe reemplazarse.

– Si esta acción no elimina los ruidos anormales, reemplace el turbocompresor.

¡Los turbocompresores funcionando correctamente, no generan un ruido excesivo!

Si se acumula aceite en las tuberías de aire de sobrealimentación y en el intercooler

El mismo diseño del motor hace que se acumule una pequeña cantidad de aceite en el sistema de aire de sobrealimentación en forma de neblina de aceite – esto es perfectamente natural y deseable. La neblina de aceite es necesaria para lubricar los asientos de las válvulas de admisión.Si se acumula más aceite de lo normal, esto es, en la medida en que se acumulen bolsillos de aceite, p.ej. en la caja de aire inferior del intercooler, esto puede conducir a la “desintegración del aceite” o a que se dispare la velocidad del motor en forma descontrolada cuando el aceite es separado -y aspirado por el motor para ser quemado como un combustible adicional-. Se debe eliminar la causa en tales casos.

Posibles causas:

El nivel de aceite del cárter del motor está sobrepasado (sobrellenado) de aceite.
Verifique si está instalada en el motor, la varilla correcta de medición de nivel de aceite y el tubo guía correcto de dicha varilla.
Se está utilizando un aceite de motor inadecuado (ver publicación “Fuels, Lubricants …”).
El motor está operando con inclinaciones inadmisibles.
Presión excesiva en el cárter del motor, debido, p. ej. a una válvula defectuosa del separador de aceite (ventilación del cárter) o a desgaste de los aros del pistón.(*5)

Descargar publicación “Fuels, Lubricants …” en formato pdf, en:

Fuels, Lubricants and Coolants for MAN Industrial  (*6)

 

Descargue este artículo en español en pdf: Mantenimiento del Motor diesel industrial o marino – Parte 1

==========

Artículo actualizado el 16 Diciembre 2017: Los errores en las tablas fueron corregidos.

==========

Fuentes:

Texto en español de gruasytransportes < gruasytransportes.wordpress.com >

(*4) Extraído de:  marinedieselspecialists.com/man-maintenance

(*5) Extraído de:  repair-guidebook.com/man-d2876-diesel-engines-repair-about-cleaning-inside-of-cooling-systemturbocharger-and-troubleshooting/

(*6) < kyber.blob.core.windows.net/mancraft-umbraco/1024/fuels-lubricantsandcoolants.pdf >

 

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: man engine d2842 le 103 – man d2842 leakage cooling water problems (gz11), similitudes de los servicios de los motores MAN con los servicios W5 W6 de los motores MTU y Mercedes Benz, LHM, Liebherr, cranes, mobile cranes, harbour mobile cranes, Gottwald, Cummins,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Grúas y equipos móviles más verdes

Grúas y equipos móviles más verdes

Compilado y traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

Publicado por KHL el 01 Agosto 2017

Foto de planta Hamofa (Crédito KHL)

 

En el mes pasado, las cuestiones medioambientales llegaron a los titulares en el Reino Unido con la noticia de que el gobierno planea prohibir la venta de nuevos coches de gasolina y diesel para el 2040. También reveló planes para gastar 246 millones de libras (320 millones de dólares) en cuatro años para financiar la investigación sobre baterías, ya que actualmente hay poca capacidad para almacenar energía renovable en el Reino Unido. Aunque la iniciativa del gobierno está dirigida a los consumidores, la industria seguramente hará lo mismo. Henrik Henriksson, presidente y CEO de Scania, la empresa de camiones de VW, comentó recientemente,

“Como empresa enfocada en la sostenibilidad, estamos impulsando los combustibles renovables: biodiesel, bioetanol, biogás. Y aquí vemos una fuerte demanda proveniente no sólo de nuestros clientes sino, algo aún más alentador, de los clientes de nuestros clientes”.

Un estudio reciente, llamado Futuro del motor en equipos móviles fuera de carretera y el post tratamiento (en inglés, Non-road Mobile Engine and Aftertreatment Forecast) de las consultoras Knibb Gormezano & Partners (KGP) y de Off-Highway Research, analizó las emisiones de los motores diesel que impulsan los equipos móviles en los sectores de equipos de construcción, agrícola y de manejo de materiales. El estudio identificó el cambio que se espera hacia el cumplimiento de las normas en los próximos años. En el 2013, más del 50 por ciento de los motores diesel instalados en equipos nuevos a nivel mundial cumplían con el estándar de emisiones llamado Tier 2 o inferior. Para el 2023, se espera que esa proporción baje a sólo 4%. Las máquinas equipadas con motores de Nivel 3 serán la parte más grande del mercado de maquinaria móvil fuera de carretera en ese momento, con una cantidad significativa en el Nivel 4 Interino o en un nivel superior. Esto incluye motores Etapa V (en inglés Stage V), que comenzarán a instalarse en máquinas nuevas en Europa a partir del 2019.

 

Es alentador ver, sin embargo,  que muchas empresas en nuestra industria están por delante de la curva. Por ejemplo, el fabricante italiano de grúas Locatelli dice que abandonó el uso de los motores Tier II hace unos diez años, a pesar de que todavía están permitidos en algunos países. Desde 2015, Locatelli afirma haber sido el primer fabricante que adoptó los motores Tier IV Final en su gama completa de grúas para terreno difícil (tipo RT). La compañía dice que gracias al uso de la última tecnología, sus motores Tier IV Final pueden reducir las emisiones de óxidos de nitrógeno y de material particulado a los niveles más bajos posibles para máquinas fuera de carretera sin comprometer el rendimiento de sus grúas. Además, dice que es posible ahorrar hasta un 20% de combustible en comparación con los modelos anteriores. Locatelli dice que ha logrado esto mediante la optimización de los sistemas hidráulicos y de los sistemas de control de sus grúas y mediante la gestión electrónica del motor diesel, un enfoque que veremos que también han adoptado otros fabricantes.

Locatelli dice que está trabajando con sus proveedores para desarrollar opciones de motor Tier V para ofrecer soluciones a sus principales clientes en los mercados de contratación, alquiler y astilleros, ya que estas son las áreas que más se preocupan por cuestiones medioambientales y por minimizar las emisiones nocivas.

Mejoras de eficiencia del motor

Foto de Motor Liebherr. Crédito greenport.com

Otra empresa que trabaja para optimizar sus sistemas de accionamiento y sus sistemas de control para reducir el consumo de combustible y maximizar la confiabilidad y la productividad de todas sus nuevas grúas sobre orugas para ciclos de trabajo cortos y rápidos (esto es las grúas de la serie HS) y sus grúas de elevación de la serie LR, así como todas sus piloteadoras y sus perforadoras, es el fabricante alemán de grúas Liebherr. Por ejemplo, todos los motores Stage IV / Tier 4 Final de la compañía tienen una velocidad máxima limitada de 1,700 rpm; esto, dice la compañía, contribuye a un ahorro de combustible de aproximadamente el cinco por ciento en comparación con los motores diesel anteriores.

Los sistemas hidráulicos optimizados también permiten reducir el tamaño de los motores diesel de las grúas sobre orugas sin efectos negativos en su productividad, afirma Liebherr. De esta forma, nos explican, se incrementa la eficiencia y se disminuye el consumo de combustible. En la nueva grúa sobre orugas para ciclos de trabajo cortos y rápidos Liebherr HS 8130 HD, por ejemplo, la potencia del motor diesel se ha reducido a 505 kW en comparación con los 670 kW del modelo anterior.

Liebherr ha introducido otra característica del motor diesel que mejora la eficiencia, esto es una menor velocidad del motor diesel cuando este está en ralentí. Esto es significativo ya que Liebherr dice que las grúas sobre orugas para ciclos de trabajo cortos y rápidos pueden estar con el motor diesel en ralentí hasta un 45% de su tiempo total de operación. Además nos comentan que esta cifra está más cerca del 60% para las grúas sobre orugas. Liebherr afirma que con la reducción de la velocidad de ralentí del motor de 950 rpm a 750 rpm en las grúas, se pueden ahorrar hasta dos litros de combustible por hora. Además, un control automático de parada del motor apaga el motor diesel durante las interrupciones de trabajo más largas, después de haber verificado que es seguro detener el motor. Esto, dice Liebherr, ahorra combustible y reduce las emisiones. Al mismo tiempo, las grúas tienen menos horas de operación, aumentando así su valor residual y extendiendo sus garantías e intervalos de mantenimiento.

Finalmente, el modo Eco-Silent, por ecológico y silencioso, hace que la velocidad del motor diesel se reduzca a un valor predefinido y solicitado. Liebherr dice que esto da como resultado una notable reducción del consumo de combustible diesel sin ningún impacto en la productividad operacional del equipo. Además, el ruido también se reduce con el modo Eco-Silent.

 

Liebherr está interesado en señalar que los intereses ambientales y económicos pueden alinearse unos con otros. Los compradores de grúas deberían considerar un bajo consumo de combustible, intervalos de servicio más largos, así como una mayor vida útil al comprar una grúa, dice, no sólo porque estas cosas son buenas para el medioambiente sino porque así pueden ahorrar una cantidad considerable de dinero a lo largo de la vida útil de la máquina.

 

Tecnología “Load sensing” o de sensado de la carga

Wolffkran también hace un uso completo de los controles de sensado de carga (load sensing). Para las grúas equipadas con plumas abatibles movidas mediante transmisiones hidráulicas, como la Wolff 166 B, el control de sensado de carga (load sensing) ajusta automáticamente el rendimiento de la bomba hidráulica a la capacidad requerida. En otras palabras, el sistema usa sensores para medir la carga y luego regula el caudal de aceite en el sistema hidráulico según sea necesario, en lugar de suministrar continuamente la cantidad máxima de aceite hidráulico. Por lo tanto, la grúa Wolff 166 B sólo necesita un motor relativamente pequeño de 22 kW, que requiere menos energía que un motor más grande.

Wolffkran también utiliza un sistema automático de arranque – parada (start-stop). El cilindro que mueve la pluma de la grúa 166 B es movido a través de una unidad hidráulica. Un motor eléctrico acciona la bomba hidráulica y esta suministra aceite al cilindro hidráulico. Con el sistema de arranque y parada (start-stop) Wolff, el motor eléctrico se apaga automáticamente si no se mueve la pluma abatible.

SONY DSC

Foto Motores reacondicionados- Recon engines. Crédito Hamofa.be

Hamofa Industrial Engines reacondiciona más de 900 motores diesel al año, lo que ayuda a reducir el impacto ambiental negativo.

 

Foto: Motor reacondicionado. Crédito mascus.com.

 

Motores reacondicionados

Una alternativa ecológica al uso de motores optimizados es la opción de reacondicionar motores. Este es un servicio que ofrece la empresa belga Hamofa Industrial Engines. La empresa dice que reacondiciona más de 900 motores diesel al año. Hamofa afirma que el costo de reacondicionamiento de un motor viejo es varias veces menor que el costo de compra de un motor nuevo. También dice que, donde sea posible, el proceso de reacondicionamiento reutiliza las principales partes del motor, como el block de cilindros, el cigüeñal y la tapa de cilindros, lo que reduce el impacto ambiental negativo.

Descargue este artículo en pdf: Grúas y equipos móviles más verdes _ Grúas y Transportes

Fuentes:

Texto en español de gruasytransportes < gruasytransportes.wordpress.com >

Extraído de: khl.com/international-cranes-and-specialized-transport/going-green/128972.article

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: Going green | Article | KHL(gz11), Ciclos de trabajo cortos y rápidos (en inglés, High duty cycle), min-1=rpm,  “Load sensing”=  sensado de la carga,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Grúa Liebherr LR de Coamtra en Huergo – Video-

Grúa Liebherr LR de Coamtra en Huergo – Video-

< vimeo.com/227011489 >

Publicado en vimeo por F24Group

Fuentes:

vimeo.com

Tags: COAMTRA – Huergo (gz11), Enviado por DN,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Reparaciones estructurales de grúas móviles y la responsabilidad legal

Reparaciones estructurales de grúas móviles y la responsabilidad legal

Traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

Antes y Después (Foto de arabiancrane.com)

 

ADVERTENCIA

Información importante sobre la garantía y la responsabilidad legal relacionados con la grúa

Manitowoc Crane Care le recuerda que los reglamentos y normas de la OSHA* estipulan que “las modificaciones o agregados que afectan la capacidad o la operación segura del equipo están prohibidas excepto cuando se cumplan los requisitos de los párrafos específicos de 1926.1434. {29CFR1926 Subparte CC “Grúas y plumas – en inglés, Derricks- en la Construcción”}

El uso de cualquier pieza de repuesto que no esté autorizada por la fábrica y / o realizar modificaciones no autorizadas o alteraciones en una grúa puede anular la garantía de la grúa, producir condiciones de trabajo inseguras y dar como resultado que el Concesionario, el Propietario, el Operador, el Arrendador, el Arrendatario o el Usuario de una grúa esté violando los estándares de la industria y las reglas y regulaciones de la OSHA. Tales violaciones pueden resultar en multas substanciales y en otras penas. Además, quienes venden y usan partes no conformes y / o realizan reparaciones o modificaciones no autorizadas pueden ser puestos en una posición de ser considerados legalmente responsables de tales acciones y pasar a ser considerados responsables de las lesiones y de los daños derivados de una falla.

* Las grúas son diseñadas, fabricadas, probadas y están destinadas a ser operadas con referencia a los requisitos aplicables de la industria de grúas y los estándares de consenso nacional (por ejemplo, la Norma Nacional Americana ASME B30.5, las Normas PCSA No. 2 y los Estándares y Prácticas Recomendadas SAE, algunos de los cuales son incorporados como referencia en varias Reglas y Reglamentos del Departamento de Seguridad Laboral y Salud Ocupacional de los Estados Unidos (OSHA). Las regulaciones de la OSHA relativas a las operaciones de grúas se citan específicamente en el Título 29, Código de Reglamentos Federales (CFR), Partes 1910 y 1926, Secciones 180 y Subparte CC (esto es, 29CFR1910.180 “Grúas sobre cadenas, grúas ferroviaria -sobre rieles de ferrocarril- y grúas sobre camión” y 29CFR1926 Subparte CC “Grúas y plumas – en inglés, Derricks- en la Construcción”), respectivamente. Las grúas Manitowoc cumplen con la intención de la OSHA en la medida en que sea aplicable cuando se utilicen de acuerdo con los requisitos en ella publicados. Debe tenerse en cuenta que el usuario de una grúa (es decir, el Empleador / Empleado) es responsable del cumplimiento de los requisitos literales de la OSHA.

Autor del texto original en inglés:

Manitowoc Cranes

1565 Buchanan Trail East PO Box 21

Shady Grove, PA 17256-0021

T 717 597 8121 F 717 593 5999

Fuentes:

manitowoc.com

Descargar archivo original en inglés: https://www.manitowoccranes.com/~/media/Files/Crane%20Care/Important%20Crane%20Warranty%20And%20Liability%20Information.pdf

Descargar traducción en español, pdf: Reparaciones estructurales de grúas móviles y la responsabilidad legal _ Grúas y Transportes

Textos traducidos al español para gruasytransportes < gruasytransportes.wordpress.com >

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: Structural Repairs – Manitowoc Grove (gz6)(gz7), liability=responsabilidad legal (gz7), locomotive crane= grúa ferroviaria -sobre rieles de ferrocarril- , Derrick= pluma, Liebherr, LHM, LTM, LR,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Guía para “Mangueras hidráulicas en grúas móviles” – FEM

Guía para “Mangueras hidráulicas en grúas móviles” – FEM

Publicado por heavyliftnews.com

Traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

Esta guía fue publicada por la FEM para informar a los operadores y a los “managers” cómo mantener sus mangueras hidráulicas en buenas condiciones y cuando es necesario reemplazarlas. Esto es aplicable tanto en las grúas hidráulicas como en el equipo pesado de construcción y equipo portuario.

01.09.2013

Federación Europea de Manutención – Grupo de productos: Grúas y Equipo de levantamiento

Derechos de Autor (Copyright): FEM PG CLE Disponible en: Inglés (EN) Fuentes ver al final del documento

Derechos de la traducción al español (Copyright): Gustavo Zamora de gruasytransportes.wordpress.com

Nota Legal: Este documento debe servir únicamente como referencia e información general: este documento se usa para proveer una guía en la evaluación de los riesgos relacionados con las mangueras hidráulicas en las grúas móviles. Este documento no abarca cada uno ni todos los escenarios imaginables, ni tampoco es una interpretación vinculante del marco legal existente. Este documento no reemplaza ni puede sustituir el estudio de las directivas, leyes y regulaciones pertinentes. Además, las características específicas de los diferentes productos y sus diversas aplicaciones deben ser tomadas en cuenta. Por esta razón, las evaluaciones y procedimientos mencionados en este documento pueden ser impactados por una gran variedad de circunstancias. En consecuencia, un cantidad de otras interpretaciones son también posibles.

1. Introducción

A raíz de un accidente de tráfico con víctimas fatales causado por un auto que patinó sobre una película de aceite presuntamente proveniente de una pérdida de aceite de una grúa móvil cuyo mantenimiento era deficiente, los Fabricantes Europeos de Grúas Móviles agrupados en la FEM emiten esta directriz sobre la vida útil de las mangueras hidráulicas, además de la información relativa a la inspección periódica, y a la sustitución de las mangueras hidráulicas. Las mangueras hidráulicas son fabricadas con manguera de goma a granel y con accesorios de conexión (en inglés, fittings) y son destinadas a conducir aceite hidráulico hasta una presión de trabajo de 420 bares.

2. Alcance

Este documento se aplica a todas las mangueras hidráulicas en grúas móviles y es considerado información complementaria al manual de operación de la máquina o grúa. Este documento se aplica a todos los tipos de grúa móvil tal como se la define en la norma EN13000 Grúas- Grúas Móviles.

La FEM proporciona aquí información consistente proveniente de los fabricantes de grúas móviles para los usuarios de los equipos sobre las características de las mangueras hidráulicas, y la necesidad e importancia de su inspección y de su reemplazo.

3. Normas existentes

Las mangueras hidráulicas son diseñadas, probadas y fabricadas de acuerdo a las siguientes normas, por ejemplo:

ISO 8331, Mangueras de goma y de plástico y conjuntos de mangueras – Directrices para su selección, almacenamiento, uso y mantenimiento,

ISO 2230, Productos de caucho – Directrices para el almacenamiento,

ISO 1402, Mangueras de caucho y Mangueras de plástico y conjuntos de mangueras – Prueba hidrostática

ISO / TR 17165-2, Energía del fluído hidráulico – mangueras armadas – Parte 2: Prácticas recomendadas para armado de mangueras hidráulicas

EN 853 – EN 857 – Mangueras de goma y mangueras armadas o normas/ reglamentos alemanes, por ejemplo:

DIN 20066: 2002-10 Aunque se trata de una norma alemana, a menudo se la toma como referencia respecto de normas o directrices para la fabricación de mangueras,

BGR 237 Feb 2008 – BG-Regel: Hydraulik Schlauchleitungen – Regeln für den sicheren ·Einsatz.

4. Vida útil

Las mangueras hidráulicas son fabricadas con manguera de goma a granel la cual está sujeta, por su naturaleza, a cambios en sus propiedades físicas a lo largo de los años y tienen por lo tanto una vida útil limitada. El fabricante del material a granel de la manguera garantiza un tiempo de vida útil en la estantería mínimo de 10 años a partir de la fecha de fabricación. Este tiempo de vida útil está basado en la suposición de que las mangueras son almacenadas, instaladas y utilizadas correctamente.

NOTA: La fecha de fabricación de la manguera a granel está generalmente indicada mediante el grabado realizado sobre la manguera de goma, ver el ejemplo más abajo. La fecha de fabricación de la manguera suele estra indicada mediante una marca en los conectores de la manguera.

Descripción

1 Fabricante de la manguera de goma a granel

2 Tipo de manguera (clasificación)

3 Diámetro de la manguera

4 Estándar de referencia

5 Fecha de fabricación del material a granel de la manguera (trimestre y año)

NOTA Para más detalles, por favor refiérase a las normas pertinentes relativas a las mangueras hidráulicas al final de este documento.

La vida útil de una manguera utilizada en una grúa móvil puede variar significativamente de la vida útil indicada o esperada de la manguera. La vida útil está influenciada por una cantidad de factores tales como el medio ambiente (temperatura, humedad, aire corrosivo …) y el uso, los ciclos de trabajo, los ciclos de flexión, la abrasión, el fluido, etc.

Los factores externos desfavorables como el calor, flexión repetitiva bajo presión, etc. pueden reducir significativamente el tiempo de vida útil mientras que otras circunstancias podrían permitir una vida útil que puede incluso superar el periodo indicado como vida útil esperada. Sólo una persona competente (vér más abajo) puede extender el tiempo de vida útil más allá de los 10 años de tiempo de vida útil de una manguera armada basado en una inspección, a excepción de que el manual del operador del fabricante indique intervalos de cambio de manguera más cortos (por ejemplo: esto puede ser crítco en las mangueras de dirección del eje trasero de la grúa móvil)

También, es necesario asegurar que el ruteo de la manguera se mantiene según lo previsto por el fabricante para evitar la abrasión y/o evitar la flexión y torsión excesivas que actúan sobre la manguera y que las inspecciones regulares se llevan a cabo.

5. Inspección

La inspección visual diaria del equipo por parte del operador antes de iniciar la operación debe incluir una inspección de las mangueras hidráulicas en la medida en que esto sea posible; cualquier rastro de aceite hidráulico sobre la grúa o debajo de una grúa móvil estacionada deberá conducir a una investigación más profunda. La comprobación diaria podría indicar irregularidades y/o pérdidas en el sistema hidráulico que deban ser atendidas inmediatamente. Además de estos controles diarios, la FEM considera que son necesarias las inspecciones periódicas de las mangueras armadas.

Frecuencia de las inspecciones:

La inspección de las mangueras hidráulicas debe ser realizada de acuerdo con la información del fabricante incluída en el manual; el manual de mantenimiento debe describir el intervalo de inspección de las mangueras hidráulicas. El propietario de a grúa debe hacer su propia evaluación de riesgos basado en los datos del fabricante entre otros. Si el fabricante no proporciona ninguna información, se aplicará la siguiente regla general:

Si la edad de la grúa es menor que 10 años; realizar al menos una inspección por año.

Si la edad de la grúa es mayor que 10 años; realizar al menos una inspección cada 6 meses.

Competencia de la persona que lleva a cabo la inspección:

La inspección debe ser llevada a cabo por una persona competente · con el conocimiento y experiencia adecuados en sistemas hidráulicos y mecánicos.

La persona que realiza la inspección debe ser consciente de todos los requisitos · descriptos en las normas aplicables (ver más arriba los estándares que sirven de referencia).

Alcance de la inspección:

La inspección de las mangueras hidráulicas debe estar centrada principalmente en los siguientes aspectos:

La manguera no deberá presentar signos de daño exterior o abrasión; pues esto podría ser el resultado de:

* El contacto con otras partes debido a un ruteo incorrecto de la manguera o debido a vibraciones/ movimientos de la manguera durante el funcionamiento de la máquina.

* El medio ambiente, p.ej. La proyección de partículas externas (mangueras montadas en áreas expuestas tales como debajo de un vehículo donde reciben el impacto de piedras, agua, sal, etc. durante la conducción) o un medio ambiente agresivo (atmósfera corrosiva, etc.)

* Las mangueras que no sean totalmente accesibles para inspección deberán ser desmontadas; si las mangueras están protegidas con una manguera de protección (por ejemplo, con manguera corrugada), se debe inspeccionar también la manguera de protección ( para detectar áreas de contacto en la manguera de protección que puedan indicar que se está produciendo una abrasión en la manguera hidráulica).

Criterio de inspección:

Las mangueras hidráulicas deberán sustituirse si se cumple alguno de los siguientes criterios:

* Daños en la superficie exterior de la manguera de goma (por ejemplo, grietas, cortes, abrasión)

* La manguera se aquebradiza -en inglés embrittlement- (esto es, se vuelve quebradiza) debido al envejecimiento de su superficie exterior (aparecen grietas)

* Deformación que no corresponde a la disposición (ruteo) -en inglés routing- y forma originales de la manguera, este criterio deberá ser verificado tanto sin presón en el circuito como con presión hidráulica en el circuito y/o cuando las mangueras se curvan -en inglés bending- (por ejemplo, verificar que no exista separación entre las diferentes capas de la manguera, formación de agujeros en la manguera -en inglés blowholes -, puntos donde se vea la manguera raspada -en inglés crushed points- , mangueras con cocas o enredadas -en inglés kinks- , manguera torsionada -en inglés torsioning-).

Pérdidas

Daños o deformaciones en los accesorios (conectores) de la manguera (la función de sellado es afectada)

Movimiento entre la manguera y el conector de la manguera, la manguera se desliza o se arrastra fuera del conector – en inglés creeping out-.

Corrosión en los accesorios (conectores) que pueden afectar la resistencia o la función del accesorio (conector).

Otros requisitos y detalles pueden encontrarse en las normas pertinentes mencionadas anteriormente.

La sustitución de la manguera hidráulica: Si se requiere la sustitución de las mangueras hidráulicas, se deberá considerar la utilización de piezas de recambio originales del OEM -fabricante original del equipo-  o mangueras armadas de acuerdo con las especificaciones del fabricante original del equipo -OEM- que incluye los conectores/accesorios, la manguera de goma a granel y el proceso de armado de la manguera.

Enrutamiento -ruteo- de la manguera durante el montaje o sustitución de la manguera:

Las siguientes recomendaciones para el enrutamiento de las mangueras armadas son aplicables para el fabricante de la grúa, pero también para los usuarios finales al reemplazar las mangueras armadas:

Radios de curvatura de las mangueras

Los valores de los radios de curvatura elegidos por el fabricante original del equipo -OEM- se basan en las especificaciones internacionales o en las especificaciones del fabricante de mangueras y han sido probados en ensayos de las mangueras armadas.

Al doblar la manguera por debajo del radio de curvatura mínimo especificado por el fabricante original del equipo -OEM-, esto conduce a una pérdida de la resistencia mecánica y, por lo tanto, a un posible fallo de la manguera hidráulica.

Enrutamiento -ruteo- de la manguera

* El enrutamiento -ruteo- de una manguera armada debe realizarse según lo especificado por el fabricante original del equipo -OEM- para evitar cualquier daño a la manguera, como por ejemplo, estiramiento, compresión, mangueras con cocas o enredadas -en inglés kinking- o abrasión sobre bordes afilados, para asegurar la máxima vida útil y la seguridad del equipo. Se deberá verificar después del reemplazo que el enrutamiento -ruteo- es el correcto para la manguera armada tanto mientras esta se encuentra presurizada como cuando esta se encuentra sin presión hidráulica. Puede ser necesario comprobar si hay partes móviles en el entorno cercano de la manguera armada.

* Cuando la manguera armada es instalada formando un tramo recto de manguera, la manguera no debe quedar tensa sino que se debe asegurar cierta holgura en la misma para permitir cambios de longitud en la manguera. Los cambios de longitud ocurrirán cuando se aplica presión hidráulica en la manguera; p.ej. cuando la manguera es presurizada, la manguera se acortará y una manguera que es demasiado corta puede tironear y soltarse de los conectores -accesorios- o tensionar los accesorios de la manguera, causando fallos prematuros metálicos o de sellado.

*Se debe evitar la tensión mecánica sobre la manguera, por lo tanto no se debe retorcer la manguera durante la instalación. La sujeción / soporte (abrazaderas) de la manguera armada realizada de acuerdo con las especificaciones del fabricante de la máquina rutea/dirige de forma segura la manguera y evita el contacto de la manguera con superficies que puedan dañarla. Es importante que la manguera pueda mantener su funcionalidad como un “tubo flexible” y que la manguera pueda cambiar su longitud cuando está bajo presión.

*Las mangueras para alta presión y baja presión no deben cruzarse (con contacto directo entre ellas) ni sujetarse una junto a la otra, ya que la diferencia de los cambios de longitud podría desgastar las capas externas de las mangueras.

*Las mangueras deben mantenerse alejadas de partes calientes, ya que las altas temperaturas ambientales acortarán la vida útil de la manguera. Puede ser necesario un aislamiento protector de la manguera según lo previsto por el OEM -fabricante original de la máquina-  en áreas de alta temperatura ambiente y de haber estado colocado necesita ser reinstalado después de una reparación.

6. Documentación:

Cuando las mangueras sean inspeccionadas, cualquier observación notable deberá ser documentada por la persona competente: se propone documentar la ubicación y el estado de tales mangueras armadas, la fecha y la hora de la inspección. Si la persona competente decide no cambiar las mangueras armadas que excedan el tiempo de vida útil normal o que tengan daños menores, esta decisión deberá estar documentada por escrito. La fecha de la próxima inspección de estas mangueras hidráulicas armadas deberá indicarse en la documentación.

Cualquier observación y decisiones de la persona competente se mantendrán archivadas en la documentación de la grúa.

7. Referencias

Lo establecido por el Comité Técnico del Grupo de Producto Grúas y Equipos de Elevación de la Federación Europea de la Manutención (FEM)

Secretariado de la FEM Grupo de Producto Grúas y Equipos de Elevación

Secretariado: c/o VDMA

Materials Handling and Intralogistics Association

Lyoner Str. 18

D-60528 Frankfurt

Disponible en el servidor web de FEM (Publishing House): http://fem.vdma-verlag.de

Asociaciones miembro de FEM:

Belgica, AGORIA

Finlandia, Technology Industries of Finland

Francia, CISMA

Alemania, VDMA

Italia, AISEM

Luxemburgo, Industrie Luxembourgeoise de la Technologie du Métal p. a. FEDIL

Holanda, ME-CWM

Portugal, ANEMM

España, FEM-AEM – E.T.S.E.I.B

Suiza, SWISSMEM

Suecia, TEKNIKFÖRETAGEN

Turquía, ISDER

Reino Unido, BMHF

Descargue el pdf con la traducción al español: Guía para “Mangueras hidráulicas en grúas móviles” – FEM _ Grúas y Transportes

Fuentes:

Descargar archivo original en ingles en https://gruasytransportes.files.wordpress.com/2016/04/cle-5020.pdf

Para más información de la FEM, por favor visite el sitio web de FEM: http://www.fem-eur.com

http://www.heavyliftnews.com/news/–guideline—-hydraulic-hoses-on-mobile-cranes-?cu=58

Textos traducidos al español para gruasytransportes < gruasytransportes.wordpress.com >

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: – Guideline – “Hydraulic Hoses on Mobile Cranes”(gz7), inspeccionar las mangueras hidráulicas de una grúa es tan importante como inspeccionar las estructuras de la grúa y sus cables de acero, manguera hidraulica que transpira se debe cambiar, pintar con convertidor de oxido los accesorios hidráulicos con muestras de oxido, iso 17165 para instalacion de mangueras hidráulicas, no pisar las mangueras hidráulicas ni los cables eléctricos, usar mangueras de baja presión hidráulica en circuitos de alta presión hidráulica hará que las mangueras hidráulicas se rompan ocasionando que duren menos que lo establecido por el fabricante,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.