Archivo de la etiqueta: operador de gruas

Cuidados del turbocompresor del motor

Cuidados del turbocompresor del motor

Por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

 

En los buques y en las estaciones generadoras de energía, donde se exige una muy alta disponibilidad al motor diesel. Los turbocompresores del motor diesel son recorridos, esto es reparados a nuevo, en base a la cantidad de horas de operación y no en base a su condición.

 

En los motores diesel auxiliares que funcionan como generadores en los buques, se repara el turbocompresor a nuevo y se cambian sus rodamientos durante el mantenimiento programado de las 8.000 horas (1).

Algunos usuarios de motores MAN, Mercedes Benz y MTU de entre 400 y 1.000 HP de potencia, cambian los turbocompresores y luego los hacen reconstruír a nuevo cada 4.000 o 5.000 horas de trabajo.

1 Crédito: diariomotor.com.

 

* Consejos para alargar la vida útil del turbocompresor

 

Existen tareas de mantenimiento preventivo que se pueden realizar, tales como una descarbonización del turbo o una comprobación de holguras en su eje. No obstante, lo mejor para evitar que el turbo se vaya al cielo de los turbos es seguir estas pautas:

 

– Espera un par de minutos al arrancar el motor diesel y también antes de parar el motor diesel, manteniendo el motor funcionando en ralentí y si no es posible tener el motor en ralenti espere con el motor a velocidad nominal pero sin carga. Esto normalizará la temperatura del turbo y evitará que el aceite del eje se carbonice, creando sedimentos y partículas abrasivas que darán al traste con el carrete y provocarán fugas de aceite. Las paradas tras una conducción a máxima carga son especialmente delicadas.

 

– Utilice aceite de máxima calidad. Parece una obviedad, pero lo cierto es que el ahorro en aceites baratos – con propiedades lubricantes inferiores y deterioro rápido – queda completamente anulado por una rotura del turbocompresor antes de tiempo.

-No acelere el motor ni lo cargue hasta que el aceite no esté a la temperatura óptima. Cae de cajón, quieres asegurarte de que las propiedades de lubricación del aceite sean perfectas, y la viscosidad adecuada. Esto también beneficia al resto de componentes de fricción del motor.

2 Turbocompresor roto. Crédito: diariomotor.com.

 

* ¿Qué debo hacer en caso de avería del turbocompresor?

Si tu equipo lo permite para el motor de inmediato y evita males mayores como doblar una biela del motor o sacar una biela por el costado del block del motor. Los mecánicos reemplazarán el turbocompresor. El turbo volverá a funcionar adecuadamente tras la reparación. La integridad física del motor no se vería comprometida si la reparación estuvo bien realizada. (2)

 

Siempre es más económico reparar un turbo que comprarlo nuevo. En cuanto empecemos a notar síntomas de fallo (silba demasiado, falta de potencia, humo azulado, consumo de aceite…) es mejor revisar su estado y comprobar si tiene holgura axial antes de que se averíe definitivamente. Un eje desgastado acaba siempre en rotura y un turbo al romperse puede destrozar el motor por completo. Comprobar la holgura del eje del turbo no suele llevar más de una hora de mano de obra, y ese trabajo es un “regalo” comparado con las consecuencias de la rotura.

Es, entonces, mejor comprobar su estado antes de que se rompa por completo.(7)

* Falla del evaporador de gases de motor

3 Filtro del evaporador de gases (PCV). Crédito: turbo-matic.com

 

En muchos motores diesel, uno de los fallos frecuentes es la avería en el filtro evaporador de gases de motor, que suele estar compuesto por una válvula o membrana y por un filtro.

Nos podemos encontrar con que el filtro esté obstruido o petrificado por acumulación de carbonilla y que la válvula o membrana esté perforada y no actúe. En cualquiera de los dos casos, la avería se traduce en un fallo en el sistema de recirculación de vapores de motor.

Como consecuencia, nos podemos encontrar con que pase aceite hacia el circuito de aspiración de aire del turbocompresor, lo que puede provocar que el aceite llegue al sistema de admisión del motor y se cree autocombustión por ingestión de aceite. Y también, por otro lado, se puede crear una sobrepresión de gases de motor, que al no ser evacuados por el evaporador, pueden provocar daños severos en el turbocompresor e incluso en el motor. (3)

 

* Veamos a continuación qué dice el boletín de información técnica para el reemplazo del interenfriador – o intercooler- después de una avería del turbocompresor publicado en inglés por Behr Hella Service GmbH:

 

* Reemplazo del intercooler después de una avería o falla del turbocompresor

 

Puntos generales

 

Casi todos los motores diesel modernos con turbocompresor tienen un Intercooler -o interenfriador-. El aire caliente (con hasta 150 °C) comprimido por el turbocompresor es luego enfriado por el intercooler (Fig. 1) antes de llegar a la cámara de compresión. El aire comprimido es enfriado por el aire ambiente del exterior (interenfriamiento directo) o es enfriado por el refrigerante del motor (interenfriamiento indirecto).

La configuración y la función de los dos sistemas se muestra en más detalle en la hoja de información técnica “Intercooler”.

Fig. 1. Crédito: behrhellaservice.com.

 

* Razones para tener una avería y sus consecuencias

 

Junto a las razones clásicas para la falla o avería tales como

  • Daño externo (accidente, lanzamiento de grava o tierra dentro del turbocompresor).
  • Mangueras dañadas / bloqueadas.
  • Caudal de aire reducido debido a la superficie del filtro con suciedad.
  • Pérdida de refrigerante o del aire secundario que trabaja en el intercooler debido a fugas.
  • Un pobre intercambio de calor debido a la suciedad interna del intercooler (depósitos calcáreos o agentes selladores).

 

Existen otras posibilidades que también deben ser consideradas. Estas están relacionadas generalmente con la avería del turbocompresor.

En el caso de daños mecánicos al turbocompresor (Figuras. 2 a 5) o en caso de una fuga de aceite en el lado del compresor, el aceite y las virutas pueden acumularse

en el intercooler. El hecho de que este ensuciamiento / bloqueo puede conducir a una caída en el rendimiento del motor diesel es lo menos dañino que puede ocurrir. Las cosas se vuelven mucho más serias cuando el aceite o la viruta salen del intercooler y entran en la cámara de combustión. Esto a menudo conduce a una avería o falla del motor. Algunos motores sufren un episodio de sobrevelocidad – en inglés, “overrev”-, es decir que aumentan sus RPM hasta quedar destruídos después de que el turbocompresor ha sido reemplazado.

Fig. 2. Crédito: behrhellaservice.com.

 

Se puede llegar a acumular tanto aceite en el intercooler que conduzca a que este aceite se autopropulse repentinamente hacia la cámara de combustión después de la instalación del turbocompresor nuevo, que fue colocado para volver a tener la presión de sobrealimentación correcta.

En caso de que eso suceda cualquier especialista puede imaginar lo que acontece poco después que el motor se ha puesto en marcha. Para prevenir tal daño, como así también el “daño subsiguiente” (esto es que las partículas de metal se liberan luego en el intercooler y entran luego a la cámara de combustión), el intercooler y las piezas de fijación siempre deben ser examinados cuidadosamente cada vez que se reemplaza un turbocompresor.(4)

 

* En caso de que los cilindros estén inundados con aceite:

 

El motor de arranque puede verse impedido de hacer girar el motor por una causa ajena al motor en sí. El aceite pudo llegar a los cilindros e inundarlos. Esto puede producir daños severos en el motor al intentar arrancarlo, como por ejemplo doblar una biela.

La solución es sacar los inyectores ANTES DE INSTALAR EL TURBOCOMPRESOR NUEVO y hacer girar el motor con el motor de arranque durante 10 a 15 segundos sin que el motor arranque -o sea con el paso de combustible cerrado-, hasta que el aceite haya sido expulsado totalmente desde dentro de los cilindros.

Luego reinstalar los inyectores y purgar la línea de combustible. (5)y(6)

 

* Durante la instalación de Turbocompresor:
Es importante que durante todo el proceso de instalación del turbocompresor, se evite la entrada de suciedad o de elementos extraños a ninguna parte del turbo.
Cualquier suciedad o elementos extraños que entren al turbocompresor pueden causar daños catastróficos debido a la muy alta velocidad de operación del mismo (hasta 300.000 rpm). (6)

 

* DESPUES DE INSTALAR EL TURBOCOMPRESOR NUEVO:

 

-Debemos volver a hacer girar el motor con el motor de arranque durante 10 a 15 segundos sin que el motor arranque -o sea con el paso de combustible cerrado- esto ayuda a purgar/cebar el circuito de lubricación de aceite al turbocompresor al llenar las tuberías de presión de aceite de lubricación, el filtro de aceite y el turbocompresor con aceite antes de la puesta en marcha. Nota importante: tan pronto como el

el motor arranca, el turbo funcionará a alta velocidad y la falta de lubricación en estos

primeros segundos vitales pueden destruir un turbocompresor nuevo.

(5)y (6)

 

* Continuando con lo explicado en el boletín de información técnica para el reemplazo del interenfriador – o intercooler- después de una avería del turbocompresor publicado en inglés por Behr Hella Service GmbH:

 

* Motivo del daño, prueba de componentes

 

En el contexto de la sustitución de un turbocompresor, el motivo de la avería siempre debe ser investigado. De lo contrario, el turbocompresor podría fallar de nuevo en muy poco tiempo.

 

Deben ser atendidas las normas de instalación provistas por los fabricantes tanto del turbocompresor como del vehículo.

 

Aquí hay algunos ejemplos:

  • Verifique las válvulas de control y/o de conmutación y las tuberías de vacío
  • Verifique la tubería de admisión de aire y la tubería colectora de gases de escape en búsqueda de impurezas / residuos y límpielas de ser necesario
  • Verifique el filtro de aire y reemplácelo de ser necesario.
  • Reemplace la tubería de suministro de aceite al turbocompresor (una

inspección visual o una limpieza no son suficientes).

  • Verifique la tubería de retorno de aceite, límpiela, y reemplácela si tiene dudas

(las impurezas pueden entrar en el cárter de aceite y luego ser succionadas de nuevo por la bomba de aceite).

  • Lleve a cabo un cambio de aceite del motor y un reemplazo del filtro de aceite del motor.
  • No utilice agentes selladores líquidos.
  • Llene previamente con aceite el orificio de entrada de aceite del turbocompresor antes de ponerlo en funcionamiento.
  • Compruebe / limpie toda la ruta del aire entre el turbocompresor y el

motor.

  • Verifique que el intercooler no tenga residuos de aceite / impurezas, reemplácelo

si es necesario.

Fig. 3. Crédito: behrhellaservice.com.

 

Fig. 4. Crédito: behrhellaservice.com.

Fig. 5. Crédito: behrhellaservice.com.

 

* Limpieza del intercooler
La limpieza del intercooler es extremadamente problemática.
Hay diferentes opiniones sobre esto en el mercado. En muchos casos, el fabricante del equipo recomienda el reemplazo del intercooler. El intercooler siempre debe ser reemplazado en el caso de daño mecánico al turbocompresor (por ejemplo, paletas o álabes dañados, Fig. 2 a 5). No se puede garantizar que las virutas se eliminen completamente cuando se lava y enjuaga el intercooler, particularmente en el caso de intercoolers con insertos de turbulencia (Fig. 6). El riesgo de un daño posterior causado por las virutas que se liberen y sean succionadas en dirección hacia dentro del motor con posterioridad a la limpieza del intercooler es simplemente demasiado grande.

La limpieza del intercooler solo puede ser considerada como válida, si el único problema es que el aceite de motor se ha acumulado en el intercooler (Fig. 7). En la práctica, sin embargo, el lavado del intercooler es extremadamente complejo. Particularmente cuando se trata de grandes tuberías, como las que se encuentran en los camiones y grúas. Además, solo se pueden usar líquidos de lavado aprobados por el fabricante del vehículo y/o del componente. El uso de líquidos de limpieza inadecuados puede provocar daños materiales y la pérdida de la protección de la garantía.

Fig. 6 y Fig. 7. Crédito: behrhellaservice.com.

 

* Notas sobre la instalación de un intercooler nuevo
No importa cuál sea el motivo de la falla o del reemplazo del intercooler. Antes de la instalación de la nueva unidad, se debe investigar a fondo el motivo del daño. Las partes periféricas (turbocompresor, ventilación del cárter, recirculación de los gases de escape, entrada de aire al turbocompresor, sistema de escape, etc.) deben integrarse en el proceso de búsqueda y solución de fallas/problemas.

Fig 8 Circuito Turbocompresor Intercooler. Crédito: behrhellaservice.com.

De lo contrario, una falla puede volver a ocurrir. Por esta razón, se deben considerar los siguientes puntos:
• Verifique el recorrido del aire entre el turbocompresor y el intercooler buscando impurezas / partículas / bloqueos / reducciones en las secciones transversales.
• Compruebe el recorrido del aire entre el turbocompresor y el colector de admisión buscando impurezas / partículas / bloqueos / reducciones en las secciones transversales.
• Limpie / reemplace la canalización de aire dañada, bloqueada o sucia y sus piezas de fijación.
• Reemplace las juntas de las tuberías de aire, las conexiones de refrigerante (en el caso de los intercoolers refrigerados por agua) según sea necesario.
• Asegúrese de que todos los elementos de conexión estén apretados, que no se produzcan fugas y no se aspire “aire secundario” dentro del circuito de “aire primario”.
• Verifique la presión de sobrealimentación.(4)

 

* Veamos a continuación qué dicen las Recomendaciones generales para instalar un turbo publicadas por Turbo Diesel de Colombia Ltda.

 

Puntos de inspección y verificaciones:

 

-. Verificar si el Turbo corresponde a la aplicación para la cual fue diseñado.

 

-. Se deben cambiar los filtros de aire y aceite, así como el aceite lubricante de motor por otros totalmente nuevos y por ningún motivo debe utilizarse aceite reciclado.

 

-. Inspeccionar los sistemas de entradas y salidas del turbo para asegurar la ausencia de materiales indeseables como: fragmentos de mecanizado, virutas, tuercas, arandelas, pedazos de manguera, etc. Tenga en cuenta que partículas muy pequeñas pueden causar daño en el eje turbina o la rueda compresora. Verificar el estado de las mangueras y abrazaderas.

 

-. Los múltiples de escape, mangueras o tubos de entrada de aire y retorno de aceite tienen que estar totalmente limpios, sin dobladuras ni escapes.

 

-. Desmontar y lavar el intercooler (Solo si aplica).

 

-. En la entrada y salida de los turbos se deben utilizar empaques originales no permitiendo el uso de pegantes ni Silicona.

 

-. Verificar que los tornillos, espárragos, el múltiple se encuentren en buen estado, que no estén averiados o con fisuras. En caso de detectarse fallas se deben cambiar.

 

-. Colocar aceite limpio dentro del turbo y hacerlos girar manualmente. Esto con el fin de prelubricar los componentes internos. NUNCA SE DEBEN FRENAR LOS ROTORES DEL TURBO AL MOMENTO DE ENCENDER EL MOTOR, ya que se puede aflojar la tuerca y ocasionar daños internos.

 

-. Al montar el turbo cuidar que el drenaje de aceite quede los mas vertical posible.

 

-. Verificar que todos los tornillos de fijación del turbo se encuentren debidamente apretados. Verificar nivel de agua y de aceite.

 

-. Después de completada la instalación del turbo al sistema, poner en marcha el motor y mantenerlo operando a marcha mínima durante 5 minutos. No acelerar el motor.

 

-. Estando el motor en marcha tapar el lado de admisión de aire y verificar que el motor se apague al instante, si esto no ocurre, inspeccionar fugas en el sistema de entrada de aire.

 

* NOTAS IMPORTANTES:

 

– La tuerca del extremo del lado del compresor no debe tocarse. De hacerlo se romperá el sello adhesivo que la fija y desbalanceará el conjunto provocando la distorsión del eje.

 

– La bomba de inyección debe estar calibrada según las especificaciones del fabricante del motor. El exceso de combustible provocará el desgaste prematuro del turbo y del motor.

 

* RESPETANDO ESTAS INDICACIONES EL TURBOCOMPRESOR Y EL MOTOR TENDRÁN UNA VIDA MÁS LARGA, EVITANDO PARADAS INDESEABLES Y COSTOS ADICIONALES.(8)

 

Descargue este artículo en español en pdf: Cuidados del turbocompresor del motor

 

Bibliografía- Referencias:

(1) brighthubengineering.com/marine-engines-machinery/66033-maintenance-schedule-for-marine-auxilliary-diesel-engines/

(2)

diariomotor.com/page/2/

(3) turbo-matic.com/averias-turbos-comunes

(4) Technical Information Replacing the intercooler after a turbocharger fault – Behr Hella Service GmbH behrhellaservice.com/behr-hella-service/assets/media/ti_en_airco_ladeluftkuehler_turboschaden.pdf

(5)

cmelectronica.com.ar/noticias/como-identificar-fallas-en-un-motor-marino-diesel.html

(6)TURBO InstallatIon InstructIons: General – Garrett By Honeywell

garrett.honeywell.com/wp-content/uploads/2013/10/Turbo_Installation_91913.pdf

(7) autocasion.com/actualidad/reportajes/cuales-son-las-averias-y-cuidados-del-turbo

(8) turbodieseldecolombia.com/gallery

 

Fuentes:

Texto compilado y traducido de gruasytransportes < gruasytransportes.wordpress.com>

 

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina).

 

Tags: turbocompresor roto aceite en la admisión motor diesel(gz11), Hydrolock=cilindros inundados con aceite o con agua que se opone a la fuerza del motor de arranque y debido a ello se doblan una o más bielas, cómo evitar romper el motor por culpa del turbocompresor, 800.000 kilometros = 500.000 millas = 15.000 horas de operación, turbodiesel buenos cuidados, cooling down to stop, el motor diesel turbo debe girar en ralenti 30 segundos como mínimo antes de parar el motor, si el motor se ha calentado en exceso (recalentamiento) siempre se le debe cambiar el aceite y el filtro de aceite de motor antes de volverlo a operar una vez reparada la causa del sobrecalentamiento, mayor presion de sobrealimentación mayor potencia del motor pdf (gz22),

 

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Anuncios

Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema.org

Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema.org

Compilado y traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

La Asociación de Fabricantes de Equipo Portuario (su abreviatura en inglés PEMA) publicó un documento de información en inglés, cuya intención es la de ser una guía práctica sobre la inspección estructural, de grúas pórtico de muelle (su abreviatura en inglés STS), de grúas pórtico de patio montadas sobre rieles (su abreviatura en inglés RMG), y de grúas pórtico de patio montadas sobre neumáticos (su abreviatura en inglés RTG).

Foto 1

Según el documento mencionado:

2 – FACTORES CRITICOS DE LA FALLA (o fractura) POR FATIGA

El riesgo de una falla por fatiga es el producto de la probabilidad y de la consecuencia de la falla.
Hay tres factores críticos: dos se relacionan con la probabilidad de esa falla y uno se relaciona con las consecuencias de esa falla.
Existen dos factores principales que controlan la probabilidad de una falla por fatiga:

1. La cantidad y la amplitud de los ciclos de los esfuerzos (tensiones) en un punto particular de un miembro estructural determina la probabilidad de crecimiento de fisuras, también llamado falla (o avería o daño) por fatiga.

Una mayor cantidad de ciclos de esfuerzos y mayores amplitudes de esos esfuerzos en cada ciclo, aumentan el daño y la probabilidad de falla. Para muchos miembros estructurales de grúas, la carga sobre ese miembro estructural varía en función diecta de la magnitud y de la posición de la carga en movimiento.

2. Las concentraciones de esfuerzos (stress), las cuales incrementan localmente la amplitud de los esfuerzos, y aumentan la probabilidad de crecimiento de la fisura. Las concentraciones de esfuerzos son lugares ubicados en un miembro estructural donde, debido a discontinuidades en su geometría, las tensiones locales son mucho mayores que el promedio de las mismas en toda la sección. Las concentraciones de esfuerzos se ubican típicamente en las discontinuidades tales como las conexiones, y especialmente en las soldaduras.

Los factores menores que también afectan la evolución de la fatiga incluyen las tensiones residuales de la fabricación, las propiedades del material, la carga aplicada sobre la estructura y la temperatura.

Foto  2.1: Fisura en un miembro crítico a la fractura (FCM) en el extremo inferior del tubo único diagonal superior.

La consecuencia de la falla es el tercer factor crítico que afecta el riesgo de falla. Si la falla de un miembro estructural puede dar como resultado, la caída de la carga, o el colapso de la grúa u otra inestabilidad peligrosa, la consecuencia de la falla es significante. Si ese miembro estructural, o una parte del mismo, está cargada en tensión (esfuerzo) a ese miembro se lo conoce como un miembro crítico a la fractura o FCM. Inherente a esta definición es que un FCM no posee una ruta de carga redundante y que sea viable.

Los componentes estructurales de la grúa de mayor riesgo son los FCM que experimentan un daño severo por fatiga, en particular en las ubicaciones con concentraciones de esfuerzos significativas.

Después de que una grúa es construída, el riesgo de fatiga es mitigado típicamente mediante la búsqueda de fisuras provocadas por fatiga y reparándolas antes de que un miembro estructural se quiebre ( las mejoras de los detalles pobres del diseño respecto de la fatiga estructural son posibles, pero rara vez se realizan). Este documento proporciona una guía para ayudar a encontrar fisuras a través de la comprensión de estos tres factores críticos.

2.1 MÉTODOS DE INSPECCIÓN E INTERVALOS DE INSPECCIÖN

Aunque la tasa de crecimiento de las fisuras por fatiga es controlada por muchos factores altamente variables, la probabilidad de falla de un miembro en particular, en algún momento de su vida útil, puede ser averiguada en forma aproximada utilizando datos obtenidos en pruebas de muestras reales con detalles de fatiga similares, con cálculos de la amplitud de los esfuerzos que experimenta el miembro estructural, y con estimaciones de la cantidad de ciclos de carga.

Fotos 2.2 y 2.3: Fracturas por fatiga de miembros diagonales en trolleys (carros) con maquinaria de izaje (hoist) ubicada en el carro.

La mejor manera de reducir la probabilidad de una falla peligrosa es realizar inspecciones exhaustivas de los FCM con intervalos de tiempo calculados en base a la tasa de probabilidad de crecimiento de las fisuras. Al decir inspecciones queremos decir inspecciones visuales y otros métodos no destructivos, incluyendo el ultrasonido, las tintas penetrantes y los exámenes por partículas magnéticas realizados por un inspector de soldadura certificado.

Tales inspecciones pueden ser programadas para mantener una confiabilidad estructural consistente.

Idealmente, el fabricante de grúas proporciona al usuario un programa de mantenimiento estructural que especifica los lugares de inspección, los métodos y los intervalos.

Si el programa de inspección no está disponible, puede valer la pena hacer inspecciones visuales regulares en los lugares críticos de la grúa. Aclaramos, sin embargo, que la utilidad de las inspecciones visuales como único método para detectar fisuras peligrosas es limitado:

1. La inspección visual no detectará defectos dentro del material, como pueden detectarse mediante un examen con ultrasonido.

2. Las fisuras superficiales pueden no ser visibles hasta que ya han crecido demasiado hasta llegar a un tamaño crítico de fractura.

La figura 2.4 muestra las fases del crecimiento de la fisura. Las fisuras pueden ser detectadas en la Región 2 y ser reparadas. En la Región 3 la fractura es inminente. Para miembros estructurales críticos, los intervalos de inspección pueden ser determinados en función de la cantidad de ciclos requeridos para ir desde la Región 2 a la Región 3.

 

Figura 2.4: muestra las fases de crecimiento de la fisura.

2.2 LA CANTIDAD Y LA AMPLITUD DE LOS CICLOS DE ESFUERZOS

En cualquier grúa, el movimiento de la carga mediante el carro (trolley) y la variación entre los estados de grúa cargada y grúa descargada crean tensiones (esfuerzos) fluctuantes en la estructura.

En las grúas RMG (pórticos montados sobre rieles), un daño significativo por fatiga puede también ser inducido por el movimiento del pórtico (movimiento del gantry). Las cargas provenientes de la aceleración y del viento también crean cargas fluctuantes, pero la de la carga en movimiento es generalmente la más significativa de todas.

Figura 2.5: Nivel de esfuerzo fluctuante típico en un punto sobre una grúa operando. Cada conjunto compuesto por un pico y un valle es un ciclo.

La cantidad de ciclos de este esfuerzo fluctuante y la amplitud del esfuerzo, particularmente en la amplitud del esfuerzo donde el material se separa, son los factores más importantes para evaluar el potencial de que ocurra una fisura por fatiga.

Un mayor daño por fatiga significa que existe una mayor probabilidad de fisuras y que la confiabilidad es menor.

Cuanto mayor sea la amplitud de los esfuerzos – esto es la diferencia entre el esfuerzo mínimo y el esfuerzo máximo-, mayor será la tasa (o ritmo) de crecimiento de las fisuras por cada ciclo de carga. La influencia de la amplitud de los esfuerzos en la confiabilidad generalmente se triplica. (NdeT: Es decir que el ritmo de crecimiento de las fisuras por cada ciclo de carga crecerá tres veces por cada vez que exista un aumento de la amplitud de los esfuerzos).

Cuantos más ciclos haya, más crecerán las fisuras. La influencia de la cantidad de ciclos en la confiabilidad es lineal.

2.3 CONCENTRACIONES DE ESFUERZOS

Existen discontinuidades en todas las estructuras de acero, especialmente en las uniones soldadas. Cuando la estructura es cargada en forma repetitiva con esfuerzos, las fisuras crecen en dirección perpendicular a la dirección del esfuerzo.

El ritmo de crecimiento de la fisura depende parcialmente del nivel del esfuerzo. Las concentraciones de esfuerzos causan niveles locales más altos de esfuerzos y aceleran el crecimiento de la fisura.

Las placas adosadas a la estructura y los cambios en la geometría son discontinuidades que causan concentraciones de esfuerzos particularmente en las soldaduras. Las fisuras pueden producirse en cualquier lugar en el acero, pero generalmente se producen en las uniones soldadas.

Imagen 2.6: Ejemplos de placas adosadas y soldadas con las concentraciones de esfuerzos que surgen: En la parte superior, una barra está soldada en forma perpendicular a una placa. En la parte inferior, una placa está sobremontada encima de otra placa.

La Imagen 2.7 muestra las ubicaciones típicas de los comienzos de las fisuras y el crecimiento posterior de las fisuras debido a las concentraciones de esfuerzos que multiplican la amplitud de los esfuerzos. Las fisuras crecen típicamente a partir de pequeñas muescas creadas por la dilatación provocada por el calentamiento y la posterior contracción del material durante el proceso de soldadura.

Imagen 2.7: ejemplos de los comienzos de fisuras y el crecimiento de las mismas debido a las concentraciones de esfuerzos.

Imagen 2.8: Mirando hacia abajo en una placa de conexión de un tirante que sufrió una falla por fatiga

……

2.4 DÓNDE CRECEN LAS FISURAS – UNA DISCUSIÓN PARA LAS ESTRUCTURAS DE LAS GRÚAS

Para que las fisuras crezcan debido a la fatiga provocada por la carga debe existir un esfuerzo cíclico en una ubicación particular. Dónde exista una discontinuidad geométrica habrá una concentración de esfuerzo, una mayor amplitud de esfuerzos y una mayor probabilidad de que se produzcan fisuras por fatiga.

Cuando busque fisuras por  fatiga que sean peligrosas en una grúa, en particular:

1. Búsquelas en los miembros críticos a la fractura o FCM.

2. Sobre los FCM, busque las regiones que experimentan un daño significativo por fatiga.

3. Dentro de esas regiones, busque donde existan cambios en la sección o en la forma de la estructura y donde existan discontinuidades geométricas, y particularmente en las soldaduras ubicadas en estas áreas.

Los lugares típicos de aparición de fisuras  en los miembros principales que están en tensión en la estructura (miembros tensores), o en los tramos de esos miembros estructurales, están ubicados en los extremos de las placas de conexión, en los accesorios adosados a las estructuras  y en las soldaduras envolventes ( en inglés, wrap around welds) realizadas alrededor de cualquier placa, y también en los cambios en la sección transversal de un miembro estructural.

(NdeT: También se encontrarán fisuras donde el acero no se haya amolado correctamente y haya quedado con grandes rugosidades o rebabas.)

(NdeT: Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica.)

Descargar este artículo en español en PDF: Inspección estructural en gruas portuarias 2-Critical Factors of Fatigue Failure-by pema

El documento completo en inglés puede ser descargado en: http://www.pema.org/download476

Fuentes:

Texto en español de gruasytransportes < gruasytransportes.wordpress.com >

Texto original en inglés: pema.org

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: simo hoite crane pdf (gz11), Simo Hoite, Liftech, miembro crítico a la fractura,  stress range= amplitud de los esfuerzos, crack= fisura, stress= esfuerzos, rate of growth= ritmo o tasa de crecimiento, stay=tirante, soldaduras envolventes=wrap around welds, fisura, soldadura, pema port equipment manufacturers paper pdf, Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica,

Otros posts relacionados:

https://gruasytransportes.wordpress.com/2016/06/05/inspeccion-estructural-en-gruas-portuarias-1/

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

 

 

 

 

 

=============

English versión:

Practical Structural Examination in Ports and Terminals | A PEMA Information Paper.

The above mentioned paper explains:

2 | CRITICAL FACTORS OF FATIGUE FAILURE

The risk of a fatigue failure is the product of the probability and the consequence of the failure. There are three critical factors: two relate to probability and one to the consequences of that failure.
Two primary factors control the probability of fatigue fracture:
1. The number and range of tension stress cycles at a particular point in a structural member determine the probability of crack growth, also called fatigue damage. More stress cycles and greater tension stress range in each cycle increase the damage and the probability of failure. For many members on cranes the loading varies directly in relation to the magnitude and position of the moving load.
2. Stress concentrations, which increase the local stress range, increase the probability of crack growth. Stress concentrations are locations on a member where, due to discontinuities in geometry, local stresses are much larger than the average across the section. Stress concentrations are typically found at discontinuities such as connections, especially at welds.
Lesser factors affecting fatigue performance include residual stresses from fabrication, material properties, loading rate, and temperature.
Picture 2.1: Crack in FCM at lower end of single upper diagonal pipe.
The consequence of failure is the third critical factor affecting risk. If failure of a structural member can result in dropping the load, collapse of the crane or other dangerous instability, the consequence
is significant. If such a member, or a portion of it, is loaded in tension the member is referred to as a
fracture critical member or FCM. Inherent in this definition is that an FCM does not have a viable
redundant load path.
The highest risk crane structural components are the FCMs experiencing severe fatigue damage,
in particular at the locations with significant stress concentrations.
After a crane is built, mitigating fatigue risk is typically done by finding the fatigue cracks and repairing them before a member breaks (improvements of poor fatigue details is possible, but rarely done). This
paper provides guidance to help find cracks through understanding of these three critical factors.
2.1 INSPECTION METHODS AND INTERVALS
Although the rate of fatigue crack growth is controlled by many highly variable factors, the probability of
failure of a particular member, at some point in its life, can be approximated using data from testing of actual samples with similar fatigue details, calculations of the stress range the member experiences, and estimates of the number of load cycles.
Pictures 2.2 and 2.3: Fatigue fractures of diagonal members on machinery trolleys.
The best way to reduce the probability of a dangerous failure is to make thorough inspections of FCMs at intervals calculated based on the probable rate of crack growth. By inspections we mean visual and
other non-destructive methods including ultrasonic, dye-penetrant, and magnetic particle examination by a certified weld inspector. Such inspections can be timed to maintain a consistent structural reliability.
Ideally, the crane maker provides the user with a structural maintenance program that specifies
inspection locations, methods and intervals.
If an inspection program is not available, it can be worthwhile to make regular visual inspections at the
critical locations on the crane. We note, however, that the usefulness of visual inspections alone to
detect dangerous cracks is limited:
1. Visual inspection will not detect flaws inside the material, as can be detected by ultrasonic examination.
2. Surface cracks may not become visible until they have grown to a fracture critical size.
Picture 2.4 shows phases of crack growth. Cracks can be detected in Region 2 and repaired. In Region 3 fracture is imminent. For critical members, inspection intervals can be determined based on the number of cycles required to go from Region 2 to Region 3.
Picture 2.4: Phases of crack growth.
2.2 NUMBER AND RANGE OF STRESS CYCLES
On any crane the moving of the load by the trolley and the variation between loaded and unloaded
states creates fluctuating stresses in the structure.
On RMG cranes significant fatigue damage can also be induced by the gantry motion. Loads from
acceleration and wind also create fluctuating loads, but the moving load is typically the most significant.
Picture 2.5: Typical fluctuating stress level at one point on a working crane. Each peak and trough is one cycle.
The number of cycles of this fluctuating stress and the stress range, particularly in the tension range where the material is pulled apart, are the most important factors in evaluating the potential for fatigue cracking.
Higher fatigue damage means there is greater probability of cracking and reliability is lower.
The greater the stress range—the difference between the minimum and maximum stress—the greater the rate of crack growth per cycle of load. The influence of the stress range on reliability is typically cubed.
The more cycles, the more the cracks will grow. The influence of the number of cycles on reliability is linear.
2.3 STRESS CONCENTRATIONS
There are discontinuities in all steel structures, especially at welded joints. When the structure
is loaded repeatedly in tension, the cracks grow perpendicular to the stress direction.
The rate of growth partially depends on the stress level. Stress concentrations cause higher levels of
local stress and accelerate crack growth.
Attachments to plates and changes in geometry are discontinuities that cause stress concentrations,
particularly at the welds. The cracks can occur anywhere in steel, but they usually occur at welded
connections.
Picture 2.6: Examples of welded attachments and the stress concentrations that arise: At the top, a bar is welded perpendicular to the plate. At the bottom, a plate is lapped over another plate.
Picture 2.7 shows typical locations of crack initiation and subsequent crack growth due to stress  concentrations that multiply the stress range. The cracks typically grow from tiny notches created by the heating and subsequent shrinkage of the welding process.
Picture 2.7: Examples of crack initiation and growth due to stress concentrations.
Picture 2.8: Looking down on a forestay connection plate that failed in fatigue.
……
2.4 WHERE CRACKS GROW – A DISCUSSION FOR CRANE STRUCTURES
For cracks to grow from fatigue loading there must be a cyclic tension stress at a particular location. Where a geometric discontinuity is present there will be a stress concentration, a greater stress range, and a higher probability that fatigue cracks will occur.
When looking for dangerous fatigue cracks on a crane, in particular:
1. Look for FCMs
2. On the FCMS look for the regions that experience a significant fatigue damage
3. Within these regions look at changes in section and at geometric discontinuities, and particularly
at the welds in these areas.
Typical cracking locations in main tension members, or portions of members, are at the ends of connection plates, at attachments and wrap around welds, and at changes in cross section.

Sources:

gruasytransportes

pema.org

Compiled by Gustavo Zamora for gruasytransportes.wordpress.com

Extracted from the Paper: Practical Structural Examination in Ports and Terminals | A PEMA Information Paper – published by pema.org

Read the complete book at:

http://www.pema.org/download476

(*) Gustavo Zamora is a cranes expert. He lives and works at Buenos Aires (Argentina).

Tags: simo hoite crane pdf (gz11), Simo Hoite, Liftech, miembro crítico a la fractura,  stress range= amplitud de los esfuerzos, crack= fisura, stress= esfuerzos, rate of growth= ritmo o tasa de crecimiento, stay=tirante, soldaduras envolventes=wrap around welds, fisura, soldadura, pema port equipment manufacturers paper pdf, Los fabricantes de grúas recomiendan que nunca se suelde ningún agregado a la estructura original, y especialmente en las cercanías de las soldaduras originales de fábrica,

You can reproduce previously published material as a quotation, and the source of
the quotation must be cited as https://gruasytransportes.wordpress.com

Busquedas laborales-GT-Ofrecido Operador de grúa-GT Job Portal-Crane Operator Available

Busquedas laborales-GT-Ofrecido Operador de grúa-GT Job Portal-Crane Operator Available

Busquedas laborales-GT- Ofrecido Operador de grúa- Job Portal- Crane Operator Available to work

Se ofrece para trabajar –Crane Operator Available to work in your company :

Operador de Grúas con pluma reticulada para gran tonelaje, Supervisor de grúas de gran tonelaje, Supervisor de Rigging de gran tonelaje – Heavy-Lift Supervisor, Rigging supervisor, Crane specialist, Senior-Crane operator, Heavy-Lift Crane operator, Heavy-Lift Crane supervisor.

 

Sexo: Masculino – Sex: Male.

Posee disponibilidad para viajar – Willing to travel.

Con más de 20 años de Experiencia en operación de grúas realizando diversos proyectos alrededor del mundo – With more than 20 years experience working in different projects around the world.

País de residencia: México – Residence: Mexico.

Nacionalidad: Alemán. Nationality: German.

Idiomas: Alemán, Español, Inglés – Languages: German, Spanish, English.

Teléfono móvil y whatsapp de contacto : (+52)1 9211036448 –

Mobile phone and whatsapp: (+52)1 9211036448

Trabajò en las siguientes empresas – Worked for the following companies:

Sarens-Ojeda (Mexico), CCIC at Qatar, Mammoet Midle-East, GHHL-Gulf-Haulage-Heavy-Lift, Cargo Crane en Mexico, PKT- Krantechnik in Germany.

Experiencia en las siguientes grùas- Working experience with the following cranes:

Grùas sobre orugas con plumas reticuladas – Lattice boom Crawler cranes: Manitowoc, Kobelco, Terex-Demag CC 1800 (300 ton), CC 2400 (400 ton), CC 2500 (500 ton), CC 2800 (600 ton), CC 8800 (1250 ton), CC 8800-1 (1600 ton), , Liebherr LR 1750 (700 ton).

Búsquedas laborales-GT solo hace de nexo entre la empresa y el candidato en forma GRATUITA y sin dar garantías ni avales de ningún tipo.

Job Portal-GT . We only make a connection between the company and the candidate. Our service is for free at no cost and without guarantees nor recommendations of any kind.

Fuente- Source: https://gruasytransportes.wordpress.com

Etiquetado- Tags: (gz11), Busqueda Laboral-GT, Grua, grua autopropulsada, grua hidraulica, Ofertas Laborales GT Gruas y Transportes, Ofrecido, operador de gruas, procedimientos de trabajo, trabajo en altura

Como leer la tabla de carga de una grua movil

Cómo leer la tabla de carga de una grua móvil

El cálculo para elegir una grúa

Hace poco tiempo recibimos en gruasytransportes.wordpress.com la consulta de un lector solicitando algún “cálculo para elegir una grúa” para un trabajo determinado.

Nosotros no teníamos en ese momento ningún “cálculo para elegir una grúa”, en español.

El tema es algo complejo y largo de explicar.

Usted debe elegir la grúa en función de:
– el peso más pesado a levantar ,
– las dimensiones del bulto más voluminoso a levantar,
– las condiciones del piso donde se va a colocar la grúa,
– la distancia a la cual deberá la grúa levantar esos objetos,
– la altura sobre el piso a la cual esa grúa deberá levantar esos objetos,
– si la zona es generalmente de vientos muy fuertes, eso también deberá ser tenido en cuenta en la elección de la grúa ya que el viento afecta la capacidad de levantamiento de la grúa segun sea el tipo y la forma de la carga a ser levantada, etc.
– la frecuencia con que leventará esa carga también será importante para la elección de la grúa pues no es lo mismo elegir una grúa para trabajar continuamente levantando, por ejemplo, 50 toneladas que una grúa que levantará 50 toneladas en un montaje y las dejará en un mismo lugar hasta finalizar el trabajo.

Para mayor simplicidad, uno puede contactar a alguno de los alquiladores de grúas mas conocidos de su zona para que lo puedan asesorar en la elección de la grúa.

Una de las cosas que uno debe saber para hacer una buena elección de la grúa es “Cómo leer la tabla de carga de una grua móvil”.

Cómo leer la tabla de carga de una grua móvil – el cálculo para elegir una grúa móvil -.

Publicado por Bigge.com.

Traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

Cada grúa tiene una tabla de carga que, en definitiva, especifica las capacidades de la grúa detallando sus características y cómo varía su capacidad de carga al variar la distancia y el ángulo. Como dice el viejo dicho “si usted falla al planear, usted planea fallar”;el hecho de no consultar la tabla de carga de la grúa antes de alquilar o de utilizar una grúa para un trabajo específico podría dejarlo con demasiada capacidad o con demasiado poca capacidad para el trabajo a realizar.

Antes de que una grúa sea alquilada, transportada, utilizada o comprada, se debe consultar la tabla de carga de la grúa. Todo el mundo, desde el operador de la grúa, a los supervisores de obra, e incluso las personas de ventas tienen que saber cómo leer una tabla de carga de una grúa. Así es cómo se lee la tabla de carga de una grúa.

Para ilustrar cómo leer la tabla de carga de una grúa, hemos elegido la tabla de carga de una grúa Terex RT345XL , una grúa para terreno difícil (tipo RT) con una capacidad de elevación máxima de 45 toneladas.

img-crane-diagram

1. DIMENSIONES Y PESO – La tabla de carga muestra las dimensiones de la grúa. La tabla de carga incluye los datos para la operación con los largueros horizontales (en inglés, outriggers) extendidos, el peso de la grúa para su transporte, los radios de giro y las dimensiones del espacio necesario para maniobrar. Conocer esa información es especialmente crítico si la grúa va a estar operando en un espacio confinado, ya que la capacidad de levantamiento de la grúa varía en función de si están o no extendidos los largueros horizontales (en inglés, outriggers) de las patas de apoyo de la grúa. El peso de transporte de la grúa (ver abajo) determina el remolque a ser utilizado para transportar la grúa, determina el cómo cargar la grúa sobre el remolque, la ruta a tomar, y cuáles son los permisos requeridos para llegar al sitio de trabajo con la grúa.

img-crane-weight-diagram

En el renglón superior, el primer número de la izquierda es el peso bruto de la grúa. En las otras dos columnas, las flechas indican la carga (peso) sobre cada eje dependiendo de los accesorios adicionales que estén colocados en la grúa.

img-crane-lift-capacity

 2. CAPACIDAD DE LEVANTAMIENTO –  Aquí es donde sucede la magia. En el renglón que aparece en la parte superior de la tabla de carga, usted puede ver que estas capacidades de levantamiento se aplican a la grúa cuando se utilizan 6,5 toneladas de contrapeso, con los largueros horizontales de las patas (en inglés, outriggers) extendidos formando una superficie de apoyo de 22 pies x 22,3 pies ( 6,71 metros x 6,80 metros). Aquí, usted debe ingresar gráficamente con la capacidad de elevación que usted precisará para realizar el izaje. En la columna de la izquierda se indica en pies (su abreviatura en inglés, ‘ft.’ ) el radio de la grúa, es decir, la distancia desde el perno central de la grúa hasta el centro de la carga.

EJEMPLO: Usted necesita levantar una carga de 15 toneladas (30.000 libras) a una distancia de la grúa de 25 pies ( 7,62 metros). La distancia es medida desde el centro de giro exacto de la plataforma giratoria de la grúa hasta la vertical del centro de la carga. Una vez que usted determina la distancia, ingresa en la tabla con esa distancia, es decir en el renglón que dice 25 pies ( 7,62 metros) , luego busca en ese renglón la máxima capacidad de levantamiento, allí la tabla le indica el largo al cual debe estar extendida la pluma telescópica (en pies). En este caso, la longitud de la pluma es de 45 pies (13,72 metros).

Es importante tener en cuenta que la capacidad máxima de la grúa siempre está referida al izaje realizado al menor radio posible, generalmente este es un levantamiento realizado con la pluma sobre la parte posterior de la grúa, y con los estabilizadores completamente extendidos. Es decir que, la grúa Terex RT345 tiene una capacidad máxima de 45 toneladas, y los levantamientos realizados a cualquier distancia (distancia es radio o alcance) o a cualquier altura reducen la capacidad máxima de levantamiento de la grúa de forma espectacular.

img-range-diagram

    3. ALTURAS DE ELEVACION – Tan importante como la capacidad de levantamiento son las alturas de elevación. Para eso, usualmente se incluye en la tabla de carga decada grúa un diagrama de alturas de elevación el cual indica la longitud de pluma necesaria para levantar una carga a la distancia y a la altura requeridas por el trabajo a realizar.

    EJEMPLO: Usted necesita levantar una carga a 25 pies ( 7,62 metros) de distancia y levantarla hasta llegar a la parte superior de un edificio de cinco pisos, de 65 pies ( 19,81 metros) de altura. Consultando el diagrama de alturas de elevación (en inglés, lift range), se obtiene que se precisa una longitud de pluma de 69 pies ( 21 metros) para realizar el levantamiento.

img-lift-angle

    4. ANGULO DEL PLUMIN –   Esta tabla indica la capacidad máxima de elevación, para el caso de utilizar un plumín abatible o un plumín fijo. En la tabla se indican las capacidades de levantamiento utilizando una longitud de plumín de 32 pies ( 9,75 metros) y también una longitud de plumín de 49 pies ( 14,94 metros) (sumados a los 105 pies – 32 metros- de extensión de la pluma telescópica). Con mayores ángulos de plumín, la capacidad máxima de levantamiento disminuye. Con un plumín abatible, el ángulo se puede ajustar de forma automática desde la cabina del operador. Con un plumín fijo, por supuesto, el ángulo del plumín es fijo.

img-crane-motion

    5. LA GRUA EN MOVIMIENTO – Esta tabla indica la capacidad de elevación para una operación del tipo “pick-and-carry”, esto es trasladar la grúa con la carga colgando de la grúa. Aquí, la tabla indica el peso total capaz de ser levantado con la grúa detenida y apoyada sobre sus ruedas con la plataforma de giro a un ángulo de 360 grados, también indica el peso total que se puede levantar con la grúa tanto mientras la grúa se traslada por sí misma lentamente con la carga con la plataforma de giro en un ángulo de cero grados (modo “creep” en inglés), como el peso total que se puede levantar con la grúa mientras la grúa se traslada por sí misma a una velocidad de 2,5 millas por hora (4 kilometros por hora). La columna de la izquierda indica, nuevamente, el radio de elevación de la carga, y la columna de la extrema derecha, indica la máxima longitud de pluma con la que se puede levantar y transportar cada peso.

Ver archivo PDF RT345-LC

Descargar esta traduccion en formato PDF: Como leer la tabla de carga de una grua movil _ Grúas y Transportes

Fuentes:

bigge.com/crane-charts/how-to-read-load-charts.html

bigge.com/crane-charts/how-to-read-a-load-chart/

gruasytransportes

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

=============

Actualización del 02 de mayo de 2018:

Parte de la información contenida en este artículo de gruasytransportes.wordpress.com ha sido utilizada en un buen artículo denominado,  “Cómo leer el diagrama de carga de una grúa móvil” que se puede encontrar en http://www.gruasarlin.com/leer-tabla-carga-grua/

=============

Tags: how to read mobile crane load chart (gz22)(gz6), Contacto – cálculo para elegir una grúa(gz6), grúa para terreno difícil (tipo RT)= Rough Terrain crane= RT Crane, qué es lo más importante que debemos observar en el diagrama de cargas de una grúa visible en toda la grúa, capacidad de gruas hidraulicas, como calcular que grua necesito, curso de manejos de tablas de capacidad, curva de distancia vs peso de grua, calculo de la carga para elegir una grua telescopica, aprender sobre gruas, grua carga entender, grafico cargas grua, como carculo la grua que necesito, las grÚas y su peso maximo, carculo la grua que necesito, carga sobre ruedas grua movil, tabla izado grua, tabla de carga grua, como se calcula el tonelaje de una grua, tabla de cargas para gruas telescopicas, presentacion gruas telescopicas, como se lee la tabla de capacidades de una grua, el diagrama de cargas nos sirve para, escuela de gruas bs as,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Inspección estructural en gruas portuarias 1

Inspección estructural en gruas portuarias 1

Compilado y traducido por Gustavo Zamora* para gruasytransportes, Buenos Aires (Argentina).

La Asociación de Fabricantes de Equipo Portuario (su abreviatura en inglés PEMA) publicó un documento de información en inglés, cuya intención es la de ser una guía práctica sobre la inspección estructural, de grúas pórtico de muelle (su abreviatura en inglés STS), de grúas pórtico de patio montadas sobre rieles (su abreviatura en inglés RMG), y de grúas pórtico de patio montadas sobre neumáticos (su abreviatura en inglés RTG).

Según el documento mencionado:

“El objetivo (del documento) es incrementar la comprensión del riesgo asociado con las fallas por fatiga, explicar la importancia de la inspección estructural, y dar una guía práctica para asistir al personal de la terminal (portuaria) a localizar fisuras mediante la inspección visual. Nosotros, dice el documento, tenemos la creencia de que una inspección visual realizada por personal no especializado es mejor que no realizar ningún tipo de inspección, pero también creemos que esa inspección no reemplaza a un programa de inspecciones adecuado realizado por un profesional.”

El documento también explica más adelante que, “Las estructuras de acero sujetas a cargas variables o repetidas pueden fallar estando en servicio con cargas significativamente menores a su resistencia estática. Este tipo de falla, que resulta del crecimiento de las fisuras que se encuentran sometidas a cargas variables, es conocida como fatiga. Casi todas las fallas de los componentes estructurales de una grúa son debidas a la fatiga.

Las estructuras de acero soldado siempre contienen fisuras indetectables, particularmente en las uniones soldadas. Las variaciones de los esfuerzos más allá de un valor pequeño hace que las fisuras crezcan y eventualmente pueden dar como resultado una falla repentina por rotura frágil.

Las fallas del comienzo de la vida útil de una grúa pueden ocurrir dentro de los primeros años de operación.

Pero puede tomar 15 años o más para que las fisuras peligrosas sean detectables. De acuerdo con los datos de la empresa aseguradora TT Club, La tercera mayor causa mundial de reclamos de equipos en los puertos es el daño por fatiga, siendo estos casos un diez por ciento del total.Las dos mayores causas de reclamos están relacionadas con la operación y con el clima.

Las averías o fallas por fatiga en el equipo portuario, especialmente en las grúas pórtico de muelle (su abreviatura en inglés STS), suponen un riesgo significativo para la seguridad humana, para la seguridad operativa y para la seguridad económica. El riesgo de tales fallas se puede reducir de manera significativa mediante inspecciones estructurales periódicas en los lugares clave de las grúas.

En la flota mundial actual de unas 3.000 grúas pórtico de muelle (su abreviatura en inglés STS), cada una de esas grúas tiene miles de fisuras creciendo lentamente, y nosotros estimamos que cada año 150 de esas grúas desarrollarán una fisura por fatiga que puede resultar en la falla de un miembro (viga) crítico de la estructura de la grúa.

La mayoría de estas fisuras serán descubiertas y reparadas antes de que suceda la falla de un miembro (viga) crítico de la estructura de la grúa.”

El documento completo en inglés puede ser descargado en: http://www.pema.org/download476

Fuentes:

gruasytransportes

pema.org

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: pema port equipment manufacturers paper pdf (gz6), Simo Hoite, Liftech,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes, siempre y cuando cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Los “managers” de las empresas deben estar informados sobre la seguridad de la operación con las grúas móviles

Los “managers” de las empresas deben estar informados sobre la seguridad de la operación con las grúas móviles

Traducido por Gustavo Zamora*, Buenos Aires (Argentina) para gruasytransportes.

 

TiltUpTheRegent_med

Un equipo de “managers” con conocimientos mitiga el riesgo y construye un lugar de trabajo más seguro

Escrito por Bo Collier, en Marzo 2016.

El viejo dicho, “Usted no sabe lo que no sabe,” es cierto para muchos “managers” y supervisores cuando se trata de las operaciones de la grúa. Si un trabajador nunca ha asistido a una capacitación para operador de grúa móvil ni ha tenido alguna exposición al trabajo de operador de grúa móvil, es probable que sus conocimientos sobre grúa móvil sean limitados. Los “managers” del sitio no tienen que saberlo todo, especialmente cuando un operador con experiencia está a cargo. Sin embargo, abdicar la responsabilidad con la esperanza de que otros velarán por el mejor interés de la empresa puede no ser, tampoco, la mejor elección.

Leyes y Regulaciones

En la construcción, el uso de grúas está regulado por la OSHA 1926, subparte CC, y esta fue actualizada en el 2010 y detalla las responsabilidades con respecto a la seguridad de la grúa. No es suficiente con sólo conocer las regulaciones OSHA . El supervisor también debe tener conocimiento de las normas aplicables que rigen el uso y la seguridad de las grúas, tales como varias normas de la Sociedad Americana de Ingenieros Mecánicos (ASME). Las más importantes son: ASME B30.5, ASME B30.23, ASME B30.10, ASME B30.9 y ASME P30.1.

Tablas de capacidad de carga

La evolución ha impactado en cómo reaccionan las grúas en caso de sobrecarga. A diferencia de las grúas anteriores, que cuando se inclinaban levantándose ligeramente proporcionaban una advertencia de sobrecarga, las grúas modernas pueden fallar estructuralmente con poca o ninguna evidencia de estar a punto de volcarse. Es común que un supervisor le consulte al operador de la grúa si la grúa puede levantar la carga, pero por lo general los supervisores no preguntarán sobre ningún detalle porque no tienen suficiente conocimiento para evaluar la respuesta. La persona responsable de las operaciones de izaje debe tener un conocimiento profundo sobre cómo calcular la capacidad de elevación de la grúa y tener un conocimiento práctico del uso de las tablas de carga, de los diagramas de alcance y de los cuadrantes de operación de la grúa. El saber cómo utilizar estos elementos básicos para validar la respuesta de un operador es recorrer un largo camino en la creación de un lugar de trabajo más seguro.

Las inspecciones de las grúas

Desde las modificaciones realizadas al equipo hasta el criterio utilizado en la inspección anual de los cables de acero, los supervisores deben tener conocimiento de las diferentes inspecciones requeridas para mantener una grúa en condiciones de trabajo seguras, de acuerdo con OSHA subparte CC 1926.1412 y 1926.1413. Por ejemplo:

  • Una inspección post-montaje va más allá del montaje inicial de la grúa. También es necesaria cuando se modifica el equipo, tal como cuando se instala una pluma o un plumín. Una persona calificada debe garantizar que todo el montaje sea realizado según las especificaciones del fabricante.
  • Al observar los requisitos de inspección del operador antes de su turno de trabajo, se ve que no es suficiente que el operador de una vuelta caminando alrededor de la máquina y luego vaya a trabajar. Los operadores deben realizar controles de funcionamiento de todos los modos de operación y de todos los dispositivos de seguridad, y la inspección del comienzo del turno de trabajo debe ser una acción continua que se lleve a cabo durante todo el turno.
  • La inspección anual e integral es donde debería ser descubierto cualquier elemento defectuoso de la grúa que previamente no haya sido descubierto en la inspección diaria ni en la inspección mensual.

Los “managers” deberían considerar el nivel de experiencia de los encargados de realizar esta tarea y concentrarse en obtener una inspección completa. Un poco de atención adicional ahora, puede ahorrar mucho en el futuro.

Dispositivos de seguridad y ayudas para el operador,

 

Los supervisores deben comprender los dispositivos de seguridad y las ayudas para el operador, tal como se describe en la OSHA subparte CC 1926.1415 y 1926.1416. Hay siete dispositivos de seguridad , tales como el indicador del nivel de la grúa (nivel de burbuja) y la bocina, y la operación de la grúa no debe comenzar a menos que todos esos dispositivos se encuentren en buen estado de funcionamiento. Los dispositivos de seguridad no deben confundirse con las ayudas para el operador, como el indicador de momento de carga (su abreviatura en inglés, LMI), el cual si no funciona correctamente, permite utilizar métodos alternativos temporales, mientras el LMI está siendo reparado. (Nota de gruasytransportes: En nuestra opinión, si un indicador de momento de carga (su abreviatura en inglés, LMI) no está funcionando correctamente, la grúa móvil NO DEBE utilizarse hasta que el LMI esté reparado. A menos que deseemos tener más accidentes de grúas.)

Condiciones del sitio de trabajo y Configuración de la grúa

 

La planificación para la llegada de la grúa debe ser considerada al principio del proceso, con revisiones constantes ya que el sitio cambia durante la construcción. Esta planificación considera cuestiones tales como :

  • ¿Es posible conducir la grúa en el sitio ?

  • Hay suficiente espacio por debajo de las líneas eléctricas aéreas? Las estructuras existentes en el sitio me permitirán maniobrar la grúa? Las tuberías de los servicios públicos subterráneos existentes por debajo del sitio soportarán el peso de la grúa?

  • Cual es el tipo de terreno y cuál es su inclinación?
  • ¿Hay una rampa sobre la que se debe circular?

  • A medida que la grúa se está montando, ¿el suelo ofrece una adecuada capacidad para soportar esas cargas?

  • Cuáles son las condiciones del suelo?
  • Dónde están las tuberías de servicio? Hay cañerías subterráneas debajo del sitio de trabajo?
  • Hay estructuras en el camino de la grúa que pudieran presentar riesgos de aplastamiento ?

  • Hay tráfico de peatones o de otros trabajadores que vayan a estar en peligro durante la operación de la grúa en el sitio de trabajo de la misma?

Un gran porcentaje de accidentes de grúas son el resultado de una configuración inadecuada de la grúa, y muchos de esos accidentes se deben a un apoyo inadecuado, o insuficiente, de las patas estabilizadoras de la grúa. Los largueros horizontales (en inglés, outriggers) de las patas de apoyo de la grúa sólo deben ser extendidos y posicionados según lo indicado por las especificaciones del fabricante – posicione o extienda uno de esos largueros a la longitud equivocada y este puede colapsar. Saber cómo calcular el peso ejercido por la grúa sobre el suelo y determinar el tamaño necesario de las placas de apoyo para las patas de la grúa, el tamaño de las placas distribuidoras de peso (en inglés, mats) y el tamaño y cantidad de durmientes o maderas utilizados para distribuir el peso de la grúa sobre el piso es una habilidad clave .

Seguridad de las líneas de alta tensión

El documento 1926 Subparte CC describe, en cinco secciones de la norma, los requisitos y responsabilidades para la operación de las grúas, mientras estas se están trasladando, y mientras estan siendo montadas y desmontadas cerca de líneas de alta tensión. Debemos referirnos a ella con frecuencia, planificar el trabajo y ponerlo en práctica de acuerdo a lo que la norma manda para mantener seguros a los trabajadores. Más allá de seguir estas regulaciones, hay lecciones importantes que se deben enseñar con el fin de proteger a los empleados. La primera es “mire hacia arriba y siga viviendo” (en inglés, “look up and live”). Inculcar esto como el primer pensamiento que debe tener cada individuo en el lugar de trabajo. En el caso de que un compañero de trabajo caiga al suelo de forma inesperada, antes de salir corriendo en su ayuda, quédese inmóvil su lugar y mire hacia arriba. Verifique las líneas aéreas y los equipos cercanos que podrían haber sido electrificados, así como el suelo que también puede estar energizado, y cualquier trabajador podría ser la próxima víctima. Además, no se apoye sobre los equipos ni toque los equipos innecesariamente. Este simple hábito puede salvar a cualquiera que vaya a tocar el equipo de recibir una descarga eléctrica o de quedar grave o fatalmente herido.

Planificación del izaje

 

Si usted está manejando cargas irremplazables que, en caso de dañarse, podrían generar largos retrasos en el trabajo o ante cualquier cosa que usted crea que necesita una inspección especial, usted  debe generar una mayor seguridad y confiabilidad en el trabajo tomándose el tiempo para desarrollar un plan de izaje. Los planes de izajes críticos deben convertirse en parte de cada izaje que involucre ya sea, elevación de personal, izajes con múltiples grúas, izajes que excedan del 75 al 80 por ciento de la capacidad de levantamiento de la grúa y a cualquier cosa que tenga el potencial de poner en peligro a otros miembros del personal en el lugar de trabajo. Independientemente del tipo de levantamiento, nunca está de más tener un segundo par de ojos para observar exactamente donde se levantará la carga, quién actuará como señalero, quién como rigger o montador y quién como observador y donde será depositada la carga luego del izaje.

Los “managers” y los supervisores que proactivamente se toman el tiempo para educarse sobre las operaciones básicas de las grúas móviles están facultados para resolver los problemas que puedan surgir y mantener los sitios de trabajo más seguros.

Sobre el Autor


Bo Collier es el presidente de Crane Tech, LLC, una empresa de capacitación y proveedora de consultoría al servicio de los sectores de la construcción y de la industria de manejo de materiales durante más de 39 años.
El Sr. Collier puede ser contactado por correo electrónico a: bcollier@cranetech.com.
Visite cranetech.com y cranetech.com/blog/

 

Fuentes:

gruasytransportes

Crane Tech, LLC – cranetech.com/blog/ –

constructionbusinessowner.com/safety/safety/march-2016-why-management-should-be-informed-about-mobile-crane-safety

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: LMI y lineas de alta tension (gz6), Look up and live or dead and buried (electricity), katie mackey,

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes, siempre y cuando cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

Ha cambiado usted la corona de giro de una grúa móvil portuaria?

Ha cambiado usted la corona de giro de una grúa móvil portuaria?

Escrito por Gustavo Zamora*, Buenos Aires (Argentina).

Publicado por gruasytransportes.wordpress.com

Normalmente, en las grúas móviles portuarias (en inglés, harbour mobile cranes -HMC-), la corona de giro o rodamiento de giro es una pieza que va a durar toda la vida útil de la grúa. La sustitución de esa parte de la grúa es una operación muy costosa, además del costo propio de la corona de giro. Es necesario alquilar enormes grúas móviles y / o grúas flotantes para levantar la plataforma de giro con el fin de cambiar la corona de giro y se necesitan llaves especiales de torque hidráulicas y un procedimiento especial para apretar y ajustar la nueva corona de giro. Toda la operación es muy costosa.

Entonces, la mejor opción es cuidar la corona de giro de nuestra grúa móvil portuaria.
Algunas recomendaciones para prolongar la vida útil de la corona de giro de la grúa:

1Revisar el área cercana a la corona de giro en busca de fisuras. Esto debe realizarse periódicamente.

2Mantener la corona de giro siempre bien lubricada con el lubricante adecuado recomendado por el fabricante de la grúa.

3Realizar periódicamente la medición del juego de la corona de giro o prueba de balanceo (rocking test) de la corona de giro de la grúa, siendo consciente de los valores máximos permisibles recomendados por el fabricante de la grúa.

4- Cuando se utiliza la grúa móvil portuaria en el muelle, uno de los lados largos del chasis está siempre contra el buque amarrado en el muelle.
Es importante girar la grúa cada seis meses en el muelle con el fin de cambiar el lado largo de la grúa que está en contra del buque amarrado durante la operación de la grúa. Al hacer eso, se evita un desgaste desparejo de la corona de giro de la grúa.

5- Explique a sus operadores de grúa que la grúa TIENE QUE estar siempre con todas las ruedas en el aire y nivelada antes de girar la plataforma de giro y también antes de mover la pluma hacia arriba o hacia abajo. No importa si el sistema electrónico de la grúa le permite al operador hacer lo que no está permitido hacer. El operador DEBE evitar hacerlo.
Explique a sus operadores de grúa que el no seguir estas instrucciones puede constituir un peligro para la estabilidad de la grúa y también para la vida útil de la corona de giro de la grúa.

6- Recuerde siempre que el operador de la grúa debe seguir las instrucciones escritas del fabricante de la grúa como se indican en el manual de operación de la grúa.

Usted puede también descargar el siguiente archivo pdf, en idioma Inglés, con información adicional acerca de las pruebas de balanceo (en inglés, rocking test) de la corona de giro de la grúa:

Survey and Examination of Ships’ Lifting Appliances https://gruasytransportes.files.wordpress.com/2012/01/survey-and-examination-of-ships-lifting-appliances.pdf

Usted puede descargar el archivo pdf de este artículo en inglés en:

slewing ring of a harbour mobile crane_gruasytransportes wordpress com

Cualquier comentario sobre este tema será agradecido.

Fuente:

gruasytransportes

(*)Gustavo Zamora es un especialista en equipo de elevación y manejo de cargas. Vive y trabaja en Buenos Aires (Argentina)

Tags: ukpandi rocking test crane pdf + structural problems luffing cylinder mobile crane pdf , LHM (gz11)(gz6), HMK, Liebherr, Gottwald, Fantuzzi, como inspeccionar el giro de las gruas, rocking test gruas,

Otros posts relacionados:

https://gruasytransportes.wordpress.com/2015/01/19/la-corona-de-giro-de-la-grua/

https://gruasytransportes.wordpress.com/2016/12/03/las-ruedas-en-el-aire-parte-2/

https://gruasytransportes.wordpress.com/2016/04/14/las-ruedas-en-el-aire/

https://gruasytransportes.wordpress.com/2015/11/25/desastre-cae-grua-movil-portuaria-sobre-el-buque-fortune-navigator/

https://gruasytransportes.wordpress.com/2015/04/11/evitar-el-desastre/

https://gruasytransportes.wordpress.com/2011/10/13/mas-detalles-sobre-la-caida-de-la-grua/

 

Si quiere colocar este post en su propio sitio, puede hacerlo sin inconvenientes,

siempre y cuando no lo modifique y cite como fuente a https://gruasytransportes.wordpress.com

Recuerde suscribirse a nuestro blog vía RSS o Email.

A %d blogueros les gusta esto: